ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsn Unicode version

Theorem rexsn 3415
Description: Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
ralsn.1  |-  A  e. 
_V
ralsn.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexsn  |-  ( E. x  e.  { A } ph  <->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rexsn
StepHypRef Expression
1 ralsn.1 . 2  |-  A  e. 
_V
2 ralsn.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32rexsng 3412 . 2  |-  ( A  e.  _V  ->  ( E. x  e.  { A } ph  <->  ps ) )
41, 3ax-mp 7 1  |-  ( E. x  e.  { A } ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243    e. wcel 1393   E.wrex 2307   _Vcvv 2557   {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-sbc 2765  df-sn 3381
This theorem is referenced by:  elsnres  4647  snec  6167  elreal  6905
  Copyright terms: Public domain W3C validator