ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximdva0m Structured version   Unicode version

Theorem reximdva0m 3230
Description: Restricted existence deduced from inhabited class. (Contributed by Jim Kingdon, 31-Jul-2018.)
Hypothesis
Ref Expression
reximdva0m.1
Assertion
Ref Expression
reximdva0m
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem reximdva0m
StepHypRef Expression
1 reximdva0m.1 . . . . . 6
21ex 108 . . . . 5
32ancld 308 . . . 4
43eximdv 1757 . . 3
54imp 115 . 2
6 df-rex 2306 . 2
75, 6sylibr 137 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97  wex 1378   wcel 1390  wrex 2301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-rex 2306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator