Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbidv Unicode version

Theorem rexeqbidv 2518
 Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
Hypotheses
Ref Expression
raleqbidv.1
raleqbidv.2
Assertion
Ref Expression
rexeqbidv
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rexeqbidv
StepHypRef Expression
1 raleqbidv.1 . . 3
21rexeqdv 2512 . 2
3 raleqbidv.2 . . 3
43rexbidv 2327 . 2
52, 4bitrd 177 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243  wrex 2307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator