Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reusv3i | Unicode version |
Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
Ref | Expression |
---|---|
reusv3.1 | |
reusv3.2 |
Ref | Expression |
---|---|
reusv3i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reusv3.1 | . . . . . 6 | |
2 | reusv3.2 | . . . . . . 7 | |
3 | 2 | eqeq2d 2051 | . . . . . 6 |
4 | 1, 3 | imbi12d 223 | . . . . 5 |
5 | 4 | cbvralv 2533 | . . . 4 |
6 | 5 | biimpi 113 | . . 3 |
7 | raaanv 3328 | . . . 4 | |
8 | prth 326 | . . . . . . 7 | |
9 | eqtr2 2058 | . . . . . . 7 | |
10 | 8, 9 | syl6 29 | . . . . . 6 |
11 | 10 | ralimi 2384 | . . . . 5 |
12 | 11 | ralimi 2384 | . . . 4 |
13 | 7, 12 | sylbir 125 | . . 3 |
14 | 6, 13 | mpdan 398 | . 2 |
15 | 14 | rexlimivw 2429 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wceq 1243 wral 2306 wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 |
This theorem is referenced by: reusv3 4192 |
Copyright terms: Public domain | W3C validator |