ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemoverl Unicode version

Theorem resqrexlemoverl 9619
Description: Lemma for resqrex 9624. Every term in the sequence is an overestimate compared with the limit 
L. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemoverl.k  |-  ( ph  ->  K  e.  NN )
Assertion
Ref Expression
resqrexlemoverl  |-  ( ph  ->  L  <_  ( F `  K ) )
Distinct variable groups:    y, A, z   
e, F, i, j   
y, F, z, i, j    e, K, i, j    y, K, z   
e, L, i, j   
y, L, z    ph, y,
z
Allowed substitution hints:    ph( e, i, j)    A( e, i, j)

Proof of Theorem resqrexlemoverl
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
2 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 9605 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
5 resqrexlemoverl.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN )
64, 5ffvelrnd 5303 . . . . . . . . 9  |-  ( ph  ->  ( F `  K
)  e.  RR+ )
76rpred 8622 . . . . . . . 8  |-  ( ph  ->  ( F `  K
)  e.  RR )
8 resqrexlemgt0.rr . . . . . . . 8  |-  ( ph  ->  L  e.  RR )
9 difrp 8619 . . . . . . . 8  |-  ( ( ( F `  K
)  e.  RR  /\  L  e.  RR )  ->  ( ( F `  K )  <  L  <->  ( L  -  ( F `
 K ) )  e.  RR+ ) )
107, 8, 9syl2anc 391 . . . . . . 7  |-  ( ph  ->  ( ( F `  K )  <  L  <->  ( L  -  ( F `
 K ) )  e.  RR+ ) )
1110biimpa 280 . . . . . 6  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  ( L  -  ( F `  K ) )  e.  RR+ )
12 resqrexlemgt0.lim . . . . . . 7  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
1312adantr 261 . . . . . 6  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
14 oveq2 5520 . . . . . . . . . 10  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( L  +  e )  =  ( L  +  ( L  -  ( F `
 K ) ) ) )
1514breq2d 3776 . . . . . . . . 9  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( ( F `  i )  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) ) ) )
16 oveq2 5520 . . . . . . . . . 10  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( ( F `  i )  +  e )  =  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )
1716breq2d 3776 . . . . . . . . 9  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( L  <  ( ( F `  i )  +  e )  <->  L  <  ( ( F `  i )  +  ( L  -  ( F `  K ) ) ) ) )
1815, 17anbi12d 442 . . . . . . . 8  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( (
( F `  i
)  <  ( L  +  e )  /\  L  <  ( ( F `
 i )  +  e ) )  <->  ( ( F `  i )  <  ( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )
1918rexralbidv 2350 . . . . . . 7  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )
2019rspcv 2652 . . . . . 6  |-  ( ( L  -  ( F `
 K ) )  e.  RR+  ->  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )
2111, 13, 20sylc 56 . . . . 5  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
22 fveq2 5178 . . . . . . 7  |-  ( j  =  b  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  b )
)
2322raleqdv 2511 . . . . . 6  |-  ( j  =  b  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )  <->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) ) )
2423cbvrexv 2534 . . . . 5  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )  <->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
2521, 24sylib 127 . . . 4  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
26 simprl 483 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  b  e.  NN )
2726nnzd 8359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  b  e.  ZZ )
2827adantr 261 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  b  e.  ZZ )
295ad2antrr 457 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  K  e.  NN )
3029nnzd 8359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  K  e.  ZZ )
3130adantr 261 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  K  e.  ZZ )
32 simpr 103 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  b  <_  K )
33 eluz2 8479 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  b
)  <->  ( b  e.  ZZ  /\  K  e.  ZZ  /\  b  <_  K ) )
3428, 31, 32, 33syl3anbrc 1088 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  K  e.  ( ZZ>= `  b )
)
35 simprr 484 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) )
3635adantr 261 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
37 fveq2 5178 . . . . . . . . . . . 12  |-  ( i  =  K  ->  ( F `  i )  =  ( F `  K ) )
3837breq1d 3774 . . . . . . . . . . 11  |-  ( i  =  K  ->  (
( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  <->  ( F `  K )  <  ( L  +  ( L  -  ( F `  K ) ) ) ) )
3937oveq1d 5527 . . . . . . . . . . . 12  |-  ( i  =  K  ->  (
( F `  i
)  +  ( L  -  ( F `  K ) ) )  =  ( ( F `
 K )  +  ( L  -  ( F `  K )
) ) )
4039breq2d 3776 . . . . . . . . . . 11  |-  ( i  =  K  ->  ( L  <  ( ( F `
 i )  +  ( L  -  ( F `  K )
) )  <->  L  <  ( ( F `  K
)  +  ( L  -  ( F `  K ) ) ) ) )
4138, 40anbi12d 442 . . . . . . . . . 10  |-  ( i  =  K  ->  (
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) )  <->  ( ( F `
 K )  < 
( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  K )  +  ( L  -  ( F `
 K ) ) ) ) ) )
4241rspcv 2652 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  b
)  ->  ( A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )  ->  (
( F `  K
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  K )  +  ( L  -  ( F `
 K ) ) ) ) ) )
4334, 36, 42sylc 56 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  ( ( F `  K )  <  ( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  K )  +  ( L  -  ( F `
 K ) ) ) ) )
4443simprd 107 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  <  ( ( F `  K
)  +  ( L  -  ( F `  K ) ) ) )
456ad2antrr 457 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  e.  RR+ )
4645rpcnd 8624 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  e.  CC )
4746adantr 261 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  ( F `  K )  e.  CC )
488ad2antrr 457 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  e.  RR )
4948recnd 7054 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  e.  CC )
5049adantr 261 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  e.  CC )
5147, 50pncan3d 7325 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  ( ( F `  K )  +  ( L  -  ( F `  K ) ) )  =  L )
5244, 51breqtrd 3788 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  <  L )
538ad3antrrr 461 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  e.  RR )
5453ltnrd 7129 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  -.  L  <  L )
5552, 54pm2.21fal 1264 . . . . 5  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  -> F.  )
562ad3antrrr 461 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  A  e.  RR )
573ad3antrrr 461 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  0  <_  A )
585ad3antrrr 461 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  K  e.  NN )
5926adantr 261 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  b  e.  NN )
60 simpr 103 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  K  <  b )
611, 56, 57, 58, 59, 60resqrexlemdecn 9610 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  b )  <  ( F `  K )
)
627ad3antrrr 461 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  K )  e.  RR )
634ad2antrr 457 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  F : NN --> RR+ )
6463, 26ffvelrnd 5303 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  b )  e.  RR+ )
6564rpred 8622 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  b )  e.  RR )
6665adantr 261 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  b )  e.  RR )
67 uzid 8487 . . . . . . . . . . . . . 14  |-  ( b  e.  ZZ  ->  b  e.  ( ZZ>= `  b )
)
6827, 67syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  b  e.  (
ZZ>= `  b ) )
69 fveq2 5178 . . . . . . . . . . . . . . . 16  |-  ( i  =  b  ->  ( F `  i )  =  ( F `  b ) )
7069breq1d 3774 . . . . . . . . . . . . . . 15  |-  ( i  =  b  ->  (
( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  <->  ( F `  b )  <  ( L  +  ( L  -  ( F `  K ) ) ) ) )
7169oveq1d 5527 . . . . . . . . . . . . . . . 16  |-  ( i  =  b  ->  (
( F `  i
)  +  ( L  -  ( F `  K ) ) )  =  ( ( F `
 b )  +  ( L  -  ( F `  K )
) ) )
7271breq2d 3776 . . . . . . . . . . . . . . 15  |-  ( i  =  b  ->  ( L  <  ( ( F `
 i )  +  ( L  -  ( F `  K )
) )  <->  L  <  ( ( F `  b
)  +  ( L  -  ( F `  K ) ) ) ) )
7370, 72anbi12d 442 . . . . . . . . . . . . . 14  |-  ( i  =  b  ->  (
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) )  <->  ( ( F `
 b )  < 
( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  b )  +  ( L  -  ( F `
 K ) ) ) ) ) )
7473rspcv 2652 . . . . . . . . . . . . 13  |-  ( b  e.  ( ZZ>= `  b
)  ->  ( A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )  ->  (
( F `  b
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  b )  +  ( L  -  ( F `
 K ) ) ) ) ) )
7568, 35, 74sylc 56 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 b )  < 
( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  b )  +  ( L  -  ( F `
 K ) ) ) ) )
7675simprd 107 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  <  (
( F `  b
)  +  ( L  -  ( F `  K ) ) ) )
7764rpcnd 8624 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  b )  e.  CC )
7877, 49, 46addsubassd 7342 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( ( F `  b )  +  L )  -  ( F `  K ) )  =  ( ( F `  b )  +  ( L  -  ( F `  K ) ) ) )
7976, 78breqtrrd 3790 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  <  (
( ( F `  b )  +  L
)  -  ( F `
 K ) ) )
807ad2antrr 457 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  e.  RR )
8165, 48readdcld 7055 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 b )  +  L )  e.  RR )
8280, 48, 81ltaddsub2d 7537 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( ( F `  K )  +  L )  < 
( ( F `  b )  +  L
)  <->  L  <  ( ( ( F `  b
)  +  L )  -  ( F `  K ) ) ) )
8379, 82mpbird 156 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 K )  +  L )  <  (
( F `  b
)  +  L ) )
8480, 65, 48ltadd1d 7529 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 K )  < 
( F `  b
)  <->  ( ( F `
 K )  +  L )  <  (
( F `  b
)  +  L ) ) )
8583, 84mpbird 156 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  <  ( F `  b )
)
8685adantr 261 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  K )  <  ( F `  b )
)
8762, 66, 86ltnsymd 7136 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  -.  ( F `  b )  <  ( F `  K
) )
8861, 87pm2.21fal 1264 . . . . 5  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  -> F.  )
89 zlelttric 8290 . . . . . 6  |-  ( ( b  e.  ZZ  /\  K  e.  ZZ )  ->  ( b  <_  K  \/  K  <  b ) )
9027, 30, 89syl2anc 391 . . . . 5  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( b  <_  K  \/  K  <  b ) )
9155, 88, 90mpjaodan 711 . . . 4  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  -> F.  )
9225, 91rexlimddv 2437 . . 3  |-  ( (
ph  /\  ( F `  K )  <  L
)  -> F.  )
9392inegd 1263 . 2  |-  ( ph  ->  -.  ( F `  K )  <  L
)
948, 7lenltd 7134 . 2  |-  ( ph  ->  ( L  <_  ( F `  K )  <->  -.  ( F `  K
)  <  L )
)
9593, 94mpbird 156 1  |-  ( ph  ->  L  <_  ( F `  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    = wceq 1243   F. wfal 1248    e. wcel 1393   A.wral 2306   E.wrex 2307   {csn 3375   class class class wbr 3764    X. cxp 4343   -->wf 4898   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514   CCcc 6887   RRcr 6888   0cc0 6889   1c1 6890    + caddc 6892    < clt 7060    <_ cle 7061    - cmin 7182    / cdiv 7651   NNcn 7914   2c2 7964   ZZcz 8245   ZZ>=cuz 8473   RR+crp 8583    seqcseq 9211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255
This theorem is referenced by:  resqrexlemglsq  9620
  Copyright terms: Public domain W3C validator