ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga Unicode version

Theorem resqrexlemga 9621
Description: Lemma for resqrex 9624. The sequence formed by squaring each term of  F converges to  A. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemsqa.g  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
Assertion
Ref Expression
resqrexlemga  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Distinct variable groups:    y, A, z   
j, F, k    x, F, k    e, j, k,
ph    ph, y, z
Allowed substitution hints:    ph( x, i)    A( x, e, i, j, k)    F( y, z, e, i)    G( x, y, z, e, i, j, k)    L( x, y, z, e, i, j, k)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
2 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 9605 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
54adantr 261 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  F : NN
--> RR+ )
6 1nn 7925 . . . . . . . . . 10  |-  1  e.  NN
76a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  NN )
85, 7ffvelrnd 5303 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR+ )
9 2z 8273 . . . . . . . . 9  |-  2  e.  ZZ
109a1i 9 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  2  e.  ZZ )
118, 10rpexpcld 9404 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
12 simpr 103 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
1311, 12rpdivcld 8640 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR+ )
1413rpred 8622 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
15 1red 7042 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  RR )
1614, 15readdcld 7055 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
17 arch 8178 . . . 4  |-  ( ( ( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  e.  RR  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
1816, 17syl 14 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)
19 simpllr 486 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  NN )
20 simpr 103 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  ( ZZ>= `  j )
)
21 eluznn 8538 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
2219, 20, 21syl2anc 391 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  NN )
23 simplll 485 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  ph )
2423adantr 261 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ph )
2524, 4syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  F : NN
--> RR+ )
2625, 22ffvelrnd 5303 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k )  e.  RR+ )
279a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  2  e.  ZZ )
2826, 27rpexpcld 9404 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR+ )
29 fveq2 5178 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
3029oveq1d 5527 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( F `  x
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
31 resqrexlemsqa.g . . . . . . . . . 10  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
3230, 31fvmptg 5248 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( F `  k ) ^ 2 )  e.  RR+ )  ->  ( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
3322, 28, 32syl2anc 391 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  =  ( ( F `  k
) ^ 2 ) )
3428rpred 8622 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR )
3524, 2syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  e.  RR )
3634, 35resubcld 7379 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  e.  RR )
3711ad3antrrr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR+ )
3837rpred 8622 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  1 ) ^ 2 )  e.  RR )
39 4re 7992 . . . . . . . . . . . . . 14  |-  4  e.  RR
40 4pos 8013 . . . . . . . . . . . . . 14  |-  0  <  4
4139, 40elrpii 8586 . . . . . . . . . . . . 13  |-  4  e.  RR+
4241a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR+ )
43 nnm1nn0 8223 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
4422, 43syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e. 
NN0 )
4544nn0zd 8358 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  ZZ )
4642, 45rpexpcld 9404 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR+ )
4738, 46rerpdivcld 8654 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  e.  RR )
4812ad3antrrr 461 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR+ )
4948rpred 8622 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  e  e.  RR )
501, 2, 3resqrexlemcalc3 9614 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5124, 22, 50syl2anc 391 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )
5214ad3antrrr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  e.  RR )
5322nnred 7927 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  RR )
54 1red 7042 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
5553, 54resubcld 7379 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  e.  RR )
5639a1i 9 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  4  e.  RR )
5756, 44reexpcld 9398 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR )
5816ad3antrrr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  e.  RR )
5919nnred 7927 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  e.  RR )
60 simplr 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
j )
61 eluzle 8485 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  j
)  ->  j  <_  k )
6261adantl 262 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  j  <_  k )
6358, 59, 53, 60, 62ltletrd 7420 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F ` 
1 ) ^ 2 )  /  e )  +  1 )  < 
k )
6452, 54, 53ltaddsubd 7536 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  k  <->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) ) )
6563, 64mpbid 135 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( k  -  1 ) )
66 4z 8275 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
67 2re 7985 . . . . . . . . . . . . . . 15  |-  2  e.  RR
68 2lt4 8090 . . . . . . . . . . . . . . 15  |-  2  <  4
6967, 39, 68ltleii 7120 . . . . . . . . . . . . . 14  |-  2  <_  4
70 eluz2 8479 . . . . . . . . . . . . . 14  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  4  e.  ZZ  /\  2  <_ 
4 ) )
719, 66, 69, 70mpbir3an 1086 . . . . . . . . . . . . 13  |-  4  e.  ( ZZ>= `  2 )
72 bernneq3 9371 . . . . . . . . . . . . 13  |-  ( ( 4  e.  ( ZZ>= ` 
2 )  /\  (
k  -  1 )  e.  NN0 )  -> 
( k  -  1 )  <  ( 4 ^ ( k  - 
1 ) ) )
7371, 44, 72sylancr 393 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  -  1 )  < 
( 4 ^ (
k  -  1 ) ) )
7452, 55, 57, 65, 73lttrd 7140 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  e )  < 
( 4 ^ (
k  -  1 ) ) )
7538, 48, 46, 74ltdiv23d 8683 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  < 
e )
7636, 47, 49, 51, 75lelttrd 7139 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
) ^ 2 )  -  A )  < 
e )
7734, 35, 49ltsubadd2d 7534 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F `  k ) ^ 2 )  -  A )  <  e  <->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) ) )
7876, 77mpbid 135 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k ) ^ 2 )  < 
( A  +  e ) )
7933, 78eqbrtrd 3784 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  ( A  +  e )
)
8033, 28eqeltrd 2114 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR+ )
8180rpred 8622 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  e.  RR )
8281, 49readdcld 7055 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  +  e )  e.  RR )
831, 2, 3resqrexlemover 9608 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  A  < 
( ( F `  k ) ^ 2 ) )
8424, 22, 83syl2anc 391 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( F `  k
) ^ 2 ) )
8584, 33breqtrrd 3790 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( G `  k ) )
8681, 48ltaddrpd 8656 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( G `  k )  <  (
( G `  k
)  +  e ) )
8735, 81, 82, 85, 86lttrd 7140 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  A  <  ( ( G `  k
)  +  e ) )
8879, 87jca 290 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1
) ^ 2 )  /  e )  +  1 )  <  j
)  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( G `  k )  <  ( A  +  e )  /\  A  < 
( ( G `  k )  +  e ) ) )
8988ralrimiva 2392 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  ( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j )  ->  A. k  e.  (
ZZ>= `  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) )
9089ex 108 . . . 4  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  ->  (
( ( ( ( F `  1 ) ^ 2 )  / 
e )  +  1 )  <  j  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  <  ( A  +  e )  /\  A  <  ( ( G `
 k )  +  e ) ) ) )
9190reximdva 2421 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. j  e.  NN  (
( ( ( F `
 1 ) ^
2 )  /  e
)  +  1 )  <  j  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) ) )
9218, 91mpd 13 . 2  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
9392ralrimiva 2392 1  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `  k )  +  e ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   A.wral 2306   E.wrex 2307   {csn 3375   class class class wbr 3764    |-> cmpt 3818    X. cxp 4343   -->wf 4898   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514   RRcr 6888   0cc0 6889   1c1 6890    + caddc 6892    < clt 7060    <_ cle 7061    - cmin 7182    / cdiv 7651   NNcn 7914   2c2 7964   4c4 7966   NN0cn0 8181   ZZcz 8245   ZZ>=cuz 8473   RR+crp 8583    seqcseq 9211   ^cexp 9254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255
This theorem is referenced by:  resqrexlemsqa  9622
  Copyright terms: Public domain W3C validator