ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmpt3 Unicode version

Theorem resmpt3 4657
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
Assertion
Ref Expression
resmpt3  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem resmpt3
StepHypRef Expression
1 resres 4624 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )
2 ssid 2964 . . . 4  |-  A  C_  A
3 resmpt 4656 . . . 4  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
42, 3ax-mp 7 . . 3  |-  ( ( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C )
54reseq1i 4608 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  B )
6 inss1 3157 . . 3  |-  ( A  i^i  B )  C_  A
7 resmpt 4656 . . 3  |-  ( ( A  i^i  B ) 
C_  A  ->  (
( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B
)  |->  C ) )
86, 7ax-mp 7 . 2  |-  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B ) 
|->  C )
91, 5, 83eqtr3i 2068 1  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1243    i^i cin 2916    C_ wss 2917    |-> cmpt 3818    |` cres 4347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-mpt 3820  df-xp 4351  df-rel 4352  df-res 4357
This theorem is referenced by:  offres  5762
  Copyright terms: Public domain W3C validator