ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renfdisj Unicode version

Theorem renfdisj 7079
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renfdisj  |-  ( RR 
i^i  { +oo , -oo } )  =  (/)

Proof of Theorem renfdisj
StepHypRef Expression
1 disj 3268 . 2  |-  ( ( RR  i^i  { +oo , -oo } )  =  (/) 
<-> 
A. x  e.  RR  -.  x  e.  { +oo , -oo } )
2 vex 2560 . . . . 5  |-  x  e. 
_V
32elpr 3396 . . . 4  |-  ( x  e.  { +oo , -oo }  <->  ( x  = +oo  \/  x  = -oo ) )
4 renepnf 7073 . . . . . 6  |-  ( x  e.  RR  ->  x  =/= +oo )
54necon2bi 2260 . . . . 5  |-  ( x  = +oo  ->  -.  x  e.  RR )
6 renemnf 7074 . . . . . 6  |-  ( x  e.  RR  ->  x  =/= -oo )
76necon2bi 2260 . . . . 5  |-  ( x  = -oo  ->  -.  x  e.  RR )
85, 7jaoi 636 . . . 4  |-  ( ( x  = +oo  \/  x  = -oo )  ->  -.  x  e.  RR )
93, 8sylbi 114 . . 3  |-  ( x  e.  { +oo , -oo }  ->  -.  x  e.  RR )
109con2i 557 . 2  |-  ( x  e.  RR  ->  -.  x  e.  { +oo , -oo } )
111, 10mprgbir 2379 1  |-  ( RR 
i^i  { +oo , -oo } )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 629    = wceq 1243    e. wcel 1393    i^i cin 2916   (/)c0 3224   {cpr 3376   RRcr 6888   +oocpnf 7057   -oocmnf 7058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-pnf 7062  df-mnf 7063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator