ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relin1 Unicode version

Theorem relin1 4455
Description: The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relin1  |-  ( Rel 
A  ->  Rel  ( A  i^i  B ) )

Proof of Theorem relin1
StepHypRef Expression
1 inss1 3157 . 2  |-  ( A  i^i  B )  C_  A
2 relss 4427 . 2  |-  ( ( A  i^i  B ) 
C_  A  ->  ( Rel  A  ->  Rel  ( A  i^i  B ) ) )
31, 2ax-mp 7 1  |-  ( Rel 
A  ->  Rel  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 2916    C_ wss 2917   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-rel 4352
This theorem is referenced by:  inopab  4468
  Copyright terms: Public domain W3C validator