ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldisj Unicode version

Theorem reldisj 3271
Description: Two ways of saying that two classes are disjoint, using the complement of  B relative to a universe  C. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
reldisj  |-  ( A 
C_  C  ->  (
( A  i^i  B
)  =  (/)  <->  A  C_  ( C  \  B ) ) )

Proof of Theorem reldisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss2 2934 . . . 4  |-  ( A 
C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )
2 pm5.44 834 . . . . . 6  |-  ( ( x  e.  A  ->  x  e.  C )  ->  ( ( x  e.  A  ->  -.  x  e.  B )  <->  ( x  e.  A  ->  ( x  e.  C  /\  -.  x  e.  B )
) ) )
3 eldif 2927 . . . . . . 7  |-  ( x  e.  ( C  \  B )  <->  ( x  e.  C  /\  -.  x  e.  B ) )
43imbi2i 215 . . . . . 6  |-  ( ( x  e.  A  ->  x  e.  ( C  \  B ) )  <->  ( x  e.  A  ->  ( x  e.  C  /\  -.  x  e.  B )
) )
52, 4syl6bbr 187 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  C )  ->  ( ( x  e.  A  ->  -.  x  e.  B )  <->  ( x  e.  A  ->  x  e.  ( C  \  B
) ) ) )
65sps 1430 . . . 4  |-  ( A. x ( x  e.  A  ->  x  e.  C )  ->  (
( x  e.  A  ->  -.  x  e.  B
)  <->  ( x  e.  A  ->  x  e.  ( C  \  B ) ) ) )
71, 6sylbi 114 . . 3  |-  ( A 
C_  C  ->  (
( x  e.  A  ->  -.  x  e.  B
)  <->  ( x  e.  A  ->  x  e.  ( C  \  B ) ) ) )
87albidv 1705 . 2  |-  ( A 
C_  C  ->  ( A. x ( x  e.  A  ->  -.  x  e.  B )  <->  A. x
( x  e.  A  ->  x  e.  ( C 
\  B ) ) ) )
9 disj1 3270 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
10 dfss2 2934 . 2  |-  ( A 
C_  ( C  \  B )  <->  A. x
( x  e.  A  ->  x  e.  ( C 
\  B ) ) )
118, 9, 103bitr4g 212 1  |-  ( A 
C_  C  ->  (
( A  i^i  B
)  =  (/)  <->  A  C_  ( C  \  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393    \ cdif 2914    i^i cin 2916    C_ wss 2917   (/)c0 3224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225
This theorem is referenced by:  disj2  3275
  Copyright terms: Public domain W3C validator