Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldisj Unicode version

Theorem reldisj 3271
 Description: Two ways of saying that two classes are disjoint, using the complement of relative to a universe . (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
reldisj

Proof of Theorem reldisj
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfss2 2934 . . . 4
2 pm5.44 834 . . . . . 6
3 eldif 2927 . . . . . . 7
43imbi2i 215 . . . . . 6
52, 4syl6bbr 187 . . . . 5
65sps 1430 . . . 4
71, 6sylbi 114 . . 3
87albidv 1705 . 2
9 disj1 3270 . 2
10 dfss2 2934 . 2
118, 9, 103bitr4g 212 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 97   wb 98  wal 1241   wceq 1243   wcel 1393   cdif 2914   cin 2916   wss 2917  c0 3224 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-nul 3225 This theorem is referenced by:  disj2  3275
 Copyright terms: Public domain W3C validator