ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldif Unicode version

Theorem reldif 4457
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
reldif  |-  ( Rel 
A  ->  Rel  ( A 
\  B ) )

Proof of Theorem reldif
StepHypRef Expression
1 difss 3070 . 2  |-  ( A 
\  B )  C_  A
2 relss 4427 . 2  |-  ( ( A  \  B ) 
C_  A  ->  ( Rel  A  ->  Rel  ( A 
\  B ) ) )
31, 2ax-mp 7 1  |-  ( Rel 
A  ->  Rel  ( A 
\  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 2914    C_ wss 2917   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-rel 4352
This theorem is referenced by:  difopab  4469
  Copyright terms: Public domain W3C validator