ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi2 Unicode version

Theorem relcoi2 4848
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
Assertion
Ref Expression
relcoi2  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  R )

Proof of Theorem relcoi2
StepHypRef Expression
1 dmrnssfld 4595 . . . 4  |-  ( dom 
R  u.  ran  R
)  C_  U. U. R
2 unss 3117 . . . . 5  |-  ( ( dom  R  C_  U. U. R  /\  ran  R  C_  U.
U. R )  <->  ( dom  R  u.  ran  R ) 
C_  U. U. R )
3 simpr 103 . . . . 5  |-  ( ( dom  R  C_  U. U. R  /\  ran  R  C_  U.
U. R )  ->  ran  R  C_  U. U. R
)
42, 3sylbir 125 . . . 4  |-  ( ( dom  R  u.  ran  R )  C_  U. U. R  ->  ran  R  C_  U. U. R )
51, 4ax-mp 7 . . 3  |-  ran  R  C_ 
U. U. R
6 cores 4824 . . 3  |-  ( ran 
R  C_  U. U. R  ->  ( (  _I  |`  U. U. R )  o.  R
)  =  (  _I  o.  R ) )
75, 6mp1i 10 . 2  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  (  _I  o.  R ) )
8 coi2 4837 . 2  |-  ( Rel 
R  ->  (  _I  o.  R )  =  R )
97, 8eqtrd 2072 1  |-  ( Rel 
R  ->  ( (  _I  |`  U. U. R
)  o.  R )  =  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    u. cun 2915    C_ wss 2917   U.cuni 3580    _I cid 4025   dom cdm 4345   ran crn 4346    |` cres 4347    o. ccom 4349   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator