ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep Unicode version

Theorem rebtwn2zlemstep 9107
Description: Lemma for rebtwn2z 9109. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Distinct variable groups:    A, m    m, K

Proof of Theorem rebtwn2zlemstep
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 peano2z 8281 . . . . . . . 8  |-  ( m  e.  ZZ  ->  (
m  +  1 )  e.  ZZ )
21ad3antlr 462 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  e.  ZZ )
3 simpr 103 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  1 )  < 
A )
4 simplrr 488 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( m  +  ( K  +  1 ) ) )
5 simpllr 486 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  ZZ )
65zcnd 8361 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  m  e.  CC )
7 1cnd 7043 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  1  e.  CC )
8 eluzelcn 8484 . . . . . . . . . . 11  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  CC )
98ad4antr 463 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  K  e.  CC )
106, 7, 9addassd 7049 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( 1  +  K ) ) )
117, 9addcomd 7164 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( 1  +  K )  =  ( K  +  1 ) )
1211oveq2d 5528 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( m  +  ( 1  +  K ) )  =  ( m  +  ( K  +  1 ) ) )
1310, 12eqtrd 2072 . . . . . . . 8  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  ( (
m  +  1 )  +  K )  =  ( m  +  ( K  +  1 ) ) )
144, 13breqtrrd 3790 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  A  <  ( ( m  +  1 )  +  K ) )
15 breq1 3767 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  (
j  <  A  <->  ( m  +  1 )  < 
A ) )
16 oveq1 5519 . . . . . . . . . 10  |-  ( j  =  ( m  + 
1 )  ->  (
j  +  K )  =  ( ( m  +  1 )  +  K ) )
1716breq2d 3776 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  ( A  <  ( j  +  K )  <->  A  <  ( ( m  +  1 )  +  K ) ) )
1815, 17anbi12d 442 . . . . . . . 8  |-  ( j  =  ( m  + 
1 )  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) ) )
1918rspcev 2656 . . . . . . 7  |-  ( ( ( m  +  1 )  e.  ZZ  /\  ( ( m  + 
1 )  <  A  /\  A  <  ( ( m  +  1 )  +  K ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
202, 3, 14, 19syl12anc 1133 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  ( m  + 
1 )  <  A
)  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
21 simpllr 486 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  e.  ZZ )
22 simplrl 487 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  m  <  A )
23 simpr 103 . . . . . . 7  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  A  <  ( m  +  K ) )
24 breq1 3767 . . . . . . . . 9  |-  ( j  =  m  ->  (
j  <  A  <->  m  <  A ) )
25 oveq1 5519 . . . . . . . . . 10  |-  ( j  =  m  ->  (
j  +  K )  =  ( m  +  K ) )
2625breq2d 3776 . . . . . . . . 9  |-  ( j  =  m  ->  ( A  <  ( j  +  K )  <->  A  <  ( m  +  K ) ) )
2724, 26anbi12d 442 . . . . . . . 8  |-  ( j  =  m  ->  (
( j  <  A  /\  A  <  ( j  +  K ) )  <-> 
( m  <  A  /\  A  <  ( m  +  K ) ) ) )
2827rspcev 2656 . . . . . . 7  |-  ( ( m  e.  ZZ  /\  ( m  <  A  /\  A  <  ( m  +  K ) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) )
2921, 22, 23, 28syl12anc 1133 . . . . . 6  |-  ( ( ( ( ( K  e.  ( ZZ>= `  2
)  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  (
m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) ) )  /\  A  <  (
m  +  K ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
30 1red 7042 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  e.  RR )
31 eluzelre 8483 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  RR )
3231ad3antrrr 461 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  K  e.  RR )
33 simplr 482 . . . . . . . . 9  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  ZZ )
3433zred 8360 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  m  e.  RR )
35 1z 8271 . . . . . . . . . . 11  |-  1  e.  ZZ
36 eluzp1l 8497 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  K  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
1  <  K )
3735, 36mpan 400 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  (
1  +  1 ) )  ->  1  <  K )
38 df-2 7973 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
3938fveq2i 5181 . . . . . . . . . 10  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
4037, 39eleq2s 2132 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  2
)  ->  1  <  K )
4140ad3antrrr 461 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  1  <  K )
4230, 32, 34, 41ltadd2dd 7419 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  <  ( m  +  K ) )
4334, 30readdcld 7055 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  1 )  e.  RR )
4434, 32readdcld 7055 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
m  +  K )  e.  RR )
45 simpllr 486 . . . . . . . 8  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  A  e.  RR )
46 axltwlin 7087 . . . . . . . 8  |-  ( ( ( m  +  1 )  e.  RR  /\  ( m  +  K
)  e.  RR  /\  A  e.  RR )  ->  ( ( m  + 
1 )  <  (
m  +  K )  ->  ( ( m  +  1 )  < 
A  \/  A  < 
( m  +  K
) ) ) )
4743, 44, 45, 46syl3anc 1135 . . . . . . 7  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  ( m  +  K )  -> 
( ( m  + 
1 )  <  A  \/  A  <  ( m  +  K ) ) ) )
4842, 47mpd 13 . . . . . 6  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  (
( m  +  1 )  <  A  \/  A  <  ( m  +  K ) ) )
4920, 29, 48mpjaodan 711 . . . . 5  |-  ( ( ( ( K  e.  ( ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  /\  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5049ex 108 . . . 4  |-  ( ( ( K  e.  (
ZZ>= `  2 )  /\  A  e.  RR )  /\  m  e.  ZZ )  ->  ( ( m  <  A  /\  A  <  ( m  +  ( K  +  1 ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) ) )
5150rexlimdva 2433 . . 3  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR )  ->  ( E. m  e.  ZZ  ( m  <  A  /\  A  <  ( m  +  ( K  +  1
) ) )  ->  E. j  e.  ZZ  ( j  <  A  /\  A  <  ( j  +  K ) ) ) )
52513impia 1101 . 2  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
53 breq1 3767 . . . 4  |-  ( m  =  j  ->  (
m  <  A  <->  j  <  A ) )
54 oveq1 5519 . . . . 5  |-  ( m  =  j  ->  (
m  +  K )  =  ( j  +  K ) )
5554breq2d 3776 . . . 4  |-  ( m  =  j  ->  ( A  <  ( m  +  K )  <->  A  <  ( j  +  K ) ) )
5653, 55anbi12d 442 . . 3  |-  ( m  =  j  ->  (
( m  <  A  /\  A  <  ( m  +  K ) )  <-> 
( j  <  A  /\  A  <  ( j  +  K ) ) ) )
5756cbvrexv 2534 . 2  |-  ( E. m  e.  ZZ  (
m  <  A  /\  A  <  ( m  +  K ) )  <->  E. j  e.  ZZ  ( j  < 
A  /\  A  <  ( j  +  K ) ) )
5852, 57sylibr 137 1  |-  ( ( K  e.  ( ZZ>= ` 
2 )  /\  A  e.  RR  /\  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  ( K  +  1 ) ) ) )  ->  E. m  e.  ZZ  ( m  < 
A  /\  A  <  ( m  +  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    \/ wo 629    /\ w3a 885    = wceq 1243    e. wcel 1393   E.wrex 2307   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   CCcc 6887   RRcr 6888   1c1 6890    + caddc 6892    < clt 7060   2c2 7964   ZZcz 8245   ZZ>=cuz 8473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-2 7973  df-n0 8182  df-z 8246  df-uz 8474
This theorem is referenced by:  rebtwn2zlemshrink  9108
  Copyright terms: Public domain W3C validator