ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  readdcan Unicode version

Theorem readdcan 7153
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
readdcan  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  <->  A  =  B ) )

Proof of Theorem readdcan
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 6993 . . . 4  |-  ( C  e.  RR  ->  E. x  e.  RR  ( C  +  x )  =  0 )
213ad2ant3 927 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( C  +  x )  =  0 )
3 oveq2 5520 . . . . . . 7  |-  ( ( C  +  A )  =  ( C  +  B )  ->  (
x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B
) ) )
43adantl 262 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B
) ) )
5 simprl 483 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  RR )
65recnd 7054 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
7 simpl3 909 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  RR )
87recnd 7054 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
9 simpl1 907 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  RR )
109recnd 7054 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
116, 8, 10addassd 7049 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  ( x  +  ( C  +  A ) ) )
12 simpl2 908 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  RR )
1312recnd 7054 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
146, 8, 13addassd 7049 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  ( x  +  ( C  +  B ) ) )
1511, 14eqeq12d 2054 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( x  +  C
)  +  A )  =  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B ) ) ) )
1615adantr 261 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( ( x  +  C )  +  A
)  =  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B ) ) ) )
174, 16mpbird 156 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  ( ( x  +  C )  +  B ) )
188adantr 261 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  C  e.  CC )
196adantr 261 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  x  e.  CC )
20 addcom 7150 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  x  e.  CC )  ->  ( C  +  x
)  =  ( x  +  C ) )
2118, 19, 20syl2anc 391 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  ( C  +  x )  =  ( x  +  C ) )
22 simplrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  ( C  +  x )  =  0 )
2321, 22eqtr3d 2074 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
x  +  C )  =  0 )
2423oveq1d 5527 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  ( 0  +  A ) )
2510adantr 261 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  A  e.  CC )
26 addid2 7152 . . . . . . 7  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
2725, 26syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
0  +  A )  =  A )
2824, 27eqtrd 2072 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  A )
2923oveq1d 5527 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  B )  =  ( 0  +  B ) )
3013adantr 261 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  B  e.  CC )
31 addid2 7152 . . . . . . 7  |-  ( B  e.  CC  ->  (
0  +  B )  =  B )
3230, 31syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
0  +  B )  =  B )
3329, 32eqtrd 2072 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  B )  =  B )
3417, 28, 333eqtr3d 2080 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  A  =  B )
3534ex 108 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  =  ( C  +  B )  ->  A  =  B ) )
362, 35rexlimddv 2437 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  ->  A  =  B )
)
37 oveq2 5520 . 2  |-  ( A  =  B  ->  ( C  +  A )  =  ( C  +  B ) )
3836, 37impbid1 130 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   E.wrex 2307  (class class class)co 5512   CCcc 6887   RRcr 6888   0cc0 6889    + caddc 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator