Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgss | Unicode version |
Description: Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.) |
Ref | Expression |
---|---|
rdgss.1 | |
rdgss.2 | |
rdgss.3 | |
rdgss.4 | |
rdgss.5 |
Ref | Expression |
---|---|
rdgss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgss.5 | . . . 4 | |
2 | ssel 2939 | . . . . . 6 | |
3 | ssid 2964 | . . . . . . 7 | |
4 | fveq2 5178 | . . . . . . . . . 10 | |
5 | 4 | fveq2d 5182 | . . . . . . . . 9 |
6 | 5 | sseq2d 2973 | . . . . . . . 8 |
7 | 6 | rspcev 2656 | . . . . . . 7 |
8 | 3, 7 | mpan2 401 | . . . . . 6 |
9 | 2, 8 | syl6 29 | . . . . 5 |
10 | 9 | ralrimiv 2391 | . . . 4 |
11 | 1, 10 | syl 14 | . . 3 |
12 | iunss2 3702 | . . 3 | |
13 | unss2 3114 | . . 3 | |
14 | 11, 12, 13 | 3syl 17 | . 2 |
15 | rdgss.1 | . . 3 | |
16 | rdgss.2 | . . 3 | |
17 | rdgss.3 | . . 3 | |
18 | rdgival 5969 | . . 3 | |
19 | 15, 16, 17, 18 | syl3anc 1135 | . 2 |
20 | rdgss.4 | . . 3 | |
21 | rdgival 5969 | . . 3 | |
22 | 15, 16, 20, 21 | syl3anc 1135 | . 2 |
23 | 14, 19, 22 | 3sstr4d 2988 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1243 wcel 1393 wral 2306 wrex 2307 cvv 2557 cun 2915 wss 2917 ciun 3657 con0 4100 wfn 4897 cfv 4902 crdg 5956 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-recs 5920 df-irdg 5957 |
This theorem is referenced by: oawordi 6049 |
Copyright terms: Public domain | W3C validator |