Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdg0 | Unicode version |
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
rdg.1 |
Ref | Expression |
---|---|
rdg0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 3884 | . . . . 5 | |
2 | dmeq 4535 | . . . . . . . 8 | |
3 | fveq1 5177 | . . . . . . . . 9 | |
4 | 3 | fveq2d 5182 | . . . . . . . 8 |
5 | 2, 4 | iuneq12d 3681 | . . . . . . 7 |
6 | 5 | uneq2d 3097 | . . . . . 6 |
7 | eqid 2040 | . . . . . 6 | |
8 | rdg.1 | . . . . . . 7 | |
9 | dm0 4549 | . . . . . . . . . 10 | |
10 | iuneq1 3670 | . . . . . . . . . 10 | |
11 | 9, 10 | ax-mp 7 | . . . . . . . . 9 |
12 | 0iun 3714 | . . . . . . . . 9 | |
13 | 11, 12 | eqtri 2060 | . . . . . . . 8 |
14 | 13, 1 | eqeltri 2110 | . . . . . . 7 |
15 | 8, 14 | unex 4176 | . . . . . 6 |
16 | 6, 7, 15 | fvmpt 5249 | . . . . 5 |
17 | 1, 16 | ax-mp 7 | . . . 4 |
18 | 17, 15 | eqeltri 2110 | . . 3 |
19 | df-irdg 5957 | . . . 4 recs | |
20 | 19 | tfr0 5937 | . . 3 |
21 | 18, 20 | ax-mp 7 | . 2 |
22 | 13 | uneq2i 3094 | . . . 4 |
23 | 17, 22 | eqtri 2060 | . . 3 |
24 | un0 3251 | . . 3 | |
25 | 23, 24 | eqtri 2060 | . 2 |
26 | 21, 25 | eqtri 2060 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 wcel 1393 cvv 2557 cun 2915 c0 3224 ciun 3657 cmpt 3818 cdm 4345 cfv 4902 crdg 5956 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-res 4357 df-iota 4867 df-fun 4904 df-fn 4905 df-fv 4910 df-recs 5920 df-irdg 5957 |
This theorem is referenced by: rdg0g 5975 om0 6038 |
Copyright terms: Public domain | W3C validator |