Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralxp Unicode version

Theorem ralxp 4479
 Description: Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1
Assertion
Ref Expression
ralxp
Distinct variable groups:   ,,,   ,,   ,,   ,   ,
Allowed substitution hints:   ()   (,)

Proof of Theorem ralxp
StepHypRef Expression
1 iunxpconst 4400 . . 3
21raleqi 2509 . 2
3 ralxp.1 . . 3
43raliunxp 4477 . 2
52, 4bitr3i 175 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243  wral 2306  csn 3375  cop 3378  ciun 3657   cxp 4343 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iun 3659  df-opab 3819  df-xp 4351  df-rel 4352 This theorem is referenced by:  ralxpf  4482  issref  4707  ffnov  5605  eqfnov  5607  funimassov  5650  f1stres  5786  f2ndres  5787  ecopover  6204  ecopoverg  6207
 Copyright terms: Public domain W3C validator