Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralpr | Unicode version |
Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralpr.1 | |
ralpr.2 | |
ralpr.3 | |
ralpr.4 |
Ref | Expression |
---|---|
ralpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralpr.1 | . 2 | |
2 | ralpr.2 | . 2 | |
3 | ralpr.3 | . . 3 | |
4 | ralpr.4 | . . 3 | |
5 | 3, 4 | ralprg 3421 | . 2 |
6 | 1, 2, 5 | mp2an 402 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wceq 1243 wcel 1393 wral 2306 cvv 2557 cpr 3376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-sbc 2765 df-un 2922 df-sn 3381 df-pr 3382 |
This theorem is referenced by: fzprval 8944 |
Copyright terms: Public domain | W3C validator |