Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqdv Unicode version

Theorem raleqdv 2511
 Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.)
Hypothesis
Ref Expression
raleq1d.1
Assertion
Ref Expression
raleqdv
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem raleqdv
StepHypRef Expression
1 raleq1d.1 . 2
2 raleq 2505 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243  wral 2306 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311 This theorem is referenced by:  raleqbidv  2517  raleqbidva  2519  cbvfo  5425  isoselem  5459  ofrfval  5720  issmo2  5904  smoeq  5905  tfrlemisucaccv  5939  fzrevral2  8968  fzrevral3  8969  fzshftral  8970  fzoshftral  9094  caucvgre  9580  cvg1nlemres  9584  rexuz3  9588  resqrexlemoverl  9619  resqrexlemsqa  9622  resqrexlemex  9623  climconst  9811  climshftlemg  9823  serif0  9871
 Copyright terms: Public domain W3C validator