ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbida Unicode version

Theorem ralbida 2317
Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
ralbida.1  |-  F/ x ph
ralbida.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralbida  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  A  ch )
)

Proof of Theorem ralbida
StepHypRef Expression
1 ralbida.1 . . 3  |-  F/ x ph
2 ralbida.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
32pm5.74da 417 . . 3  |-  ( ph  ->  ( ( x  e.  A  ->  ps )  <->  ( x  e.  A  ->  ch ) ) )
41, 3albid 1506 . 2  |-  ( ph  ->  ( A. x ( x  e.  A  ->  ps )  <->  A. x ( x  e.  A  ->  ch ) ) )
5 df-ral 2308 . 2  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
6 df-ral 2308 . 2  |-  ( A. x  e.  A  ch  <->  A. x ( x  e.  A  ->  ch )
)
74, 5, 63bitr4g 212 1  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241   F/wnf 1349    e. wcel 1393   A.wral 2303
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-ral 2308
This theorem is referenced by:  ralbidva  2319  ralbid  2321  2ralbida  2342  ralbi  2442  caucvgsrlemgt1  6851
  Copyright terms: Public domain W3C validator