Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabxmdc | Unicode version |
Description: Law of excluded middle given decidability, in terms of restricted class abstractions. (Contributed by Jim Kingdon, 2-Aug-2018.) |
Ref | Expression |
---|---|
rabxmdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmiddc 744 | . . . . . 6 DECID | |
2 | 1 | a1d 22 | . . . . 5 DECID |
3 | 2 | alimi 1344 | . . . 4 DECID |
4 | df-ral 2311 | . . . 4 | |
5 | 3, 4 | sylibr 137 | . . 3 DECID |
6 | rabid2 2486 | . . 3 | |
7 | 5, 6 | sylibr 137 | . 2 DECID |
8 | unrab 3208 | . 2 | |
9 | 7, 8 | syl6eqr 2090 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 629 DECID wdc 742 wal 1241 wceq 1243 wcel 1393 wral 2306 crab 2310 cun 2915 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rab 2315 df-v 2559 df-un 2922 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |