Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabsnt | Unicode version |
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabsnt.1 | |
rabsnt.2 |
Ref | Expression |
---|---|
rabsnt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsnt.1 | . . . 4 | |
2 | 1 | snid 3402 | . . 3 |
3 | id 19 | . . 3 | |
4 | 2, 3 | syl5eleqr 2127 | . 2 |
5 | rabsnt.2 | . . . 4 | |
6 | 5 | elrab 2698 | . . 3 |
7 | 6 | simprbi 260 | . 2 |
8 | 4, 7 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wceq 1243 wcel 1393 crab 2310 cvv 2557 csn 3375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rab 2315 df-v 2559 df-sn 3381 |
This theorem is referenced by: ontr2exmid 4250 onsucsssucexmid 4252 ordsoexmid 4286 |
Copyright terms: Public domain | W3C validator |