Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabnc Unicode version

Theorem rabnc 3250
 Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 3209 . 2
2 rabeq0 3247 . . 3
3 pm3.24 627 . . . 4
43a1i 9 . . 3
52, 4mprgbir 2379 . 2
61, 5eqtri 2060 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 97   wceq 1243   wcel 1393  crab 2310   cin 2916  c0 3224 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rab 2315  df-v 2559  df-dif 2920  df-in 2924  df-nul 3225 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator