ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.27m Structured version   Unicode version

Theorem r19.27m 3310
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
Hypothesis
Ref Expression
r19.27m.1  F/
Assertion
Ref Expression
r19.27m
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem r19.27m
StepHypRef Expression
1 r19.27m.1 . . . 4  F/
21r19.3rm 3304 . . 3
32anbi2d 437 . 2
4 r19.26 2435 . 2
53, 4syl6rbbr 188 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98   F/wnf 1346  wex 1378   wcel 1390  wral 2300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-cleq 2030  df-clel 2033  df-ral 2305
This theorem is referenced by:  r19.27mv  3311  raaanlem  3320
  Copyright terms: Public domain W3C validator