ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.26-3 Structured version   Unicode version

Theorem r19.26-3 2437
Description: Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
r19.26-3

Proof of Theorem r19.26-3
StepHypRef Expression
1 df-3an 886 . . 3
21ralbii 2324 . 2
3 r19.26 2435 . 2
4 r19.26 2435 . . . 4
54anbi1i 431 . . 3
6 df-3an 886 . . 3
75, 6bitr4i 176 . 2
82, 3, 73bitri 195 1
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98   w3a 884  wral 2300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-4 1397  ax-17 1416
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-ral 2305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator