Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsspwg Unicode version

Theorem prsspwg 3523
 Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
Assertion
Ref Expression
prsspwg

Proof of Theorem prsspwg
StepHypRef Expression
1 prssg 3521 . 2
2 elpwg 3367 . . 3
3 elpwg 3367 . . 3
42, 3bi2anan9 538 . 2
51, 4bitr3d 179 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wcel 1393   wss 2917  cpw 3359  cpr 3376 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator