ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prplnqu Unicode version

Theorem prplnqu 6718
Description: Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
Hypotheses
Ref Expression
prplnqu.x  |-  ( ph  ->  X  e.  P. )
prplnqu.q  |-  ( ph  ->  Q  e.  Q. )
prplnqu.sum  |-  ( ph  ->  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
Assertion
Ref Expression
prplnqu  |-  ( ph  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q
)  =  A )
Distinct variable groups:    A, l, u   
y, A    Q, l, u    y, Q    y, X
Allowed substitution hints:    ph( y, u, l)    X( u, l)

Proof of Theorem prplnqu
Dummy variables  f  g  h  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prplnqu.q . . . . . . . 8  |-  ( ph  ->  Q  e.  Q. )
2 nqprlu 6645 . . . . . . . 8  |-  ( Q  e.  Q.  ->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  e.  P. )
31, 2syl 14 . . . . . . 7  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
4 prplnqu.x . . . . . . 7  |-  ( ph  ->  X  e.  P. )
5 ltaddpr 6695 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P.  /\  X  e.  P. )  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  +P.  X ) )
63, 4, 5syl2anc 391 . . . . . 6  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  +P.  X ) )
7 addcomprg 6676 . . . . . . 7  |-  ( (
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P.  /\  X  e.  P. )  ->  ( <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  +P.  X
)  =  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
83, 4, 7syl2anc 391 . . . . . 6  |-  ( ph  ->  ( <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  +P.  X
)  =  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
96, 8breqtrd 3788 . . . . 5  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
10 prplnqu.sum . . . . . 6  |-  ( ph  ->  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )
11 addclpr 6635 . . . . . . . . 9  |-  ( ( X  e.  P.  /\  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )  ->  ( X  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  e.  P. )
124, 3, 11syl2anc 391 . . . . . . . 8  |-  ( ph  ->  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )
13 prop 6573 . . . . . . . . 9  |-  ( ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P.  ->  <. ( 1st `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) ,  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) >.  e.  P. )
14 elprnqu 6580 . . . . . . . . 9  |-  ( (
<. ( 1st `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) ,  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) >.  e.  P.  /\  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )  ->  A  e.  Q. )
1513, 14sylan 267 . . . . . . . 8  |-  ( ( ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P.  /\  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )  ->  A  e.  Q. )
1612, 10, 15syl2anc 391 . . . . . . 7  |-  ( ph  ->  A  e.  Q. )
17 nqpru 6650 . . . . . . 7  |-  ( ( A  e.  Q.  /\  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  e.  P. )  ->  ( A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )  <->  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P 
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >. ) )
1816, 12, 17syl2anc 391 . . . . . 6  |-  ( ph  ->  ( A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)  <->  ( X  +P.  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
1910, 18mpbid 135 . . . . 5  |-  ( ph  ->  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
20 ltsopr 6694 . . . . . 6  |-  <P  Or  P.
21 ltrelpr 6603 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
2220, 21sotri 4720 . . . . 5  |-  ( (
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  /\  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
239, 19, 22syl2anc 391 . . . 4  |-  ( ph  -> 
<. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
24 ltnqpr 6691 . . . . 5  |-  ( ( Q  e.  Q.  /\  A  e.  Q. )  ->  ( Q  <Q  A  <->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
251, 16, 24syl2anc 391 . . . 4  |-  ( ph  ->  ( Q  <Q  A  <->  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >.  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
)
2623, 25mpbird 156 . . 3  |-  ( ph  ->  Q  <Q  A )
27 ltexnqi 6507 . . 3  |-  ( Q 
<Q  A  ->  E. z  e.  Q.  ( Q  +Q  z )  =  A )
2826, 27syl 14 . 2  |-  ( ph  ->  E. z  e.  Q.  ( Q  +Q  z
)  =  A )
2919adantr 261 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
301adantr 261 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  Q  e.  Q. )
31 simprl 483 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
z  e.  Q. )
32 addcomnqg 6479 . . . . . . . . . 10  |-  ( ( Q  e.  Q.  /\  z  e.  Q. )  ->  ( Q  +Q  z
)  =  ( z  +Q  Q ) )
3330, 31, 32syl2anc 391 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( Q  +Q  z
)  =  ( z  +Q  Q ) )
34 simprr 484 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( Q  +Q  z
)  =  A )
3533, 34eqtr3d 2074 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( z  +Q  Q
)  =  A )
36 breq2 3768 . . . . . . . . . 10  |-  ( ( z  +Q  Q )  =  A  ->  (
l  <Q  ( z  +Q  Q )  <->  l  <Q  A ) )
3736abbidv 2155 . . . . . . . . 9  |-  ( ( z  +Q  Q )  =  A  ->  { l  |  l  <Q  (
z  +Q  Q ) }  =  { l  |  l  <Q  A }
)
38 breq1 3767 . . . . . . . . . 10  |-  ( ( z  +Q  Q )  =  A  ->  (
( z  +Q  Q
)  <Q  u  <->  A  <Q  u ) )
3938abbidv 2155 . . . . . . . . 9  |-  ( ( z  +Q  Q )  =  A  ->  { u  |  ( z  +Q  Q )  <Q  u }  =  { u  |  A  <Q  u }
)
4037, 39opeq12d 3557 . . . . . . . 8  |-  ( ( z  +Q  Q )  =  A  ->  <. { l  |  l  <Q  (
z  +Q  Q ) } ,  { u  |  ( z  +Q  Q )  <Q  u } >.  =  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
4135, 40syl 14 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  ( z  +Q  Q
) } ,  {
u  |  ( z  +Q  Q )  <Q  u } >.  =  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )
42 addnqpr 6659 . . . . . . . 8  |-  ( ( z  e.  Q.  /\  Q  e.  Q. )  -> 
<. { l  |  l 
<Q  ( z  +Q  Q
) } ,  {
u  |  ( z  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
4331, 30, 42syl2anc 391 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  ( z  +Q  Q
) } ,  {
u  |  ( z  +Q  Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
4441, 43eqtr3d 2074 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  =  ( <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
4529, 44breqtrd 3788 . . . . 5  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( <. { l  |  l  <Q 
z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
)
46 ltaprg 6717 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
4746adantl 262 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  Q.  /\  ( Q  +Q  z
)  =  A ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e. 
P. ) )  -> 
( f  <P  g  <->  ( h  +P.  f ) 
<P  ( h  +P.  g
) ) )
484adantr 261 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  X  e.  P. )
49 nqprlu 6645 . . . . . . 7  |-  ( z  e.  Q.  ->  <. { l  |  l  <Q  z } ,  { u  |  z  <Q  u } >.  e.  P. )
5031, 49syl 14 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  z } ,  {
u  |  z  <Q  u } >.  e.  P. )
5130, 2syl 14 . . . . . 6  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  <. { l  |  l 
<Q  Q } ,  {
u  |  Q  <Q  u } >.  e.  P. )
52 addcomprg 6676 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
5352adantl 262 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  Q.  /\  ( Q  +Q  z
)  =  A ) )  /\  ( f  e.  P.  /\  g  e.  P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
5447, 48, 50, 51, 53caovord2d 5670 . . . . 5  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( X  <P  <. { l  |  l  <Q  z } ,  { u  |  z  <Q  u } >.  <-> 
( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )  <P  ( <. { l  |  l  <Q 
z } ,  {
u  |  z  <Q  u } >.  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. )
) )
5545, 54mpbird 156 . . . 4  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  X  <P  <. { l  |  l  <Q  z } ,  { u  |  z 
<Q  u } >. )
56 nqpru 6650 . . . . 5  |-  ( ( z  e.  Q.  /\  X  e.  P. )  ->  ( z  e.  ( 2nd `  X )  <-> 
X  <P  <. { l  |  l  <Q  z } ,  { u  |  z 
<Q  u } >. )
)
5731, 48, 56syl2anc 391 . . . 4  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
( z  e.  ( 2nd `  X )  <-> 
X  <P  <. { l  |  l  <Q  z } ,  { u  |  z 
<Q  u } >. )
)
5855, 57mpbird 156 . . 3  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  -> 
z  e.  ( 2nd `  X ) )
59 oveq1 5519 . . . . 5  |-  ( y  =  z  ->  (
y  +Q  Q )  =  ( z  +Q  Q ) )
6059eqeq1d 2048 . . . 4  |-  ( y  =  z  ->  (
( y  +Q  Q
)  =  A  <->  ( z  +Q  Q )  =  A ) )
6160rspcev 2656 . . 3  |-  ( ( z  e.  ( 2nd `  X )  /\  (
z  +Q  Q )  =  A )  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q )  =  A )
6258, 35, 61syl2anc 391 . 2  |-  ( (
ph  /\  ( z  e.  Q.  /\  ( Q  +Q  z )  =  A ) )  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q )  =  A )
6328, 62rexlimddv 2437 1  |-  ( ph  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   {cab 2026   E.wrex 2307   <.cop 3378   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   1stc1st 5765   2ndc2nd 5766   Q.cnq 6378    +Q cplq 6380    <Q cltq 6383   P.cnp 6389    +P. cpp 6391    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-iltp 6568
This theorem is referenced by:  caucvgprprlemexbt  6804
  Copyright terms: Public domain W3C validator