ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodge0 Unicode version

Theorem prodge0 7820
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodge0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  ( A  x.  B ) ) )  ->  0  <_  B )

Proof of Theorem prodge0
StepHypRef Expression
1 simpll 481 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  A  e.  RR )
2 simplr 482 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  B  e.  RR )
32renegcld 7378 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  -u B  e.  RR )
4 simprl 483 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  A )
5 simprr 484 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  -u B )
61, 3, 4, 5mulgt0d 7137 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  ( A  x.  -u B ) )
71recnd 7054 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  A  e.  CC )
82recnd 7054 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  B  e.  CC )
97, 8mulneg2d 7409 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
( A  x.  -u B
)  =  -u ( A  x.  B )
)
106, 9breqtrd 3788 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  -u ( A  x.  B ) )
1110expr 357 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <  -u B  ->  0  <  -u ( A  x.  B ) ) )
12 simplr 482 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  B  e.  RR )
1312lt0neg1d 7507 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( B  <  0  <->  0  <  -u B
) )
14 simpll 481 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  A  e.  RR )
1514, 12remulcld 7056 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( A  x.  B )  e.  RR )
1615lt0neg1d 7507 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( ( A  x.  B )  <  0  <->  0  <  -u ( A  x.  B )
) )
1711, 13, 163imtr4d 192 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( B  <  0  ->  ( A  x.  B )  <  0
) )
1817con3d 561 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( -.  ( A  x.  B
)  <  0  ->  -.  B  <  0 ) )
19 0red 7028 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  0  e.  RR )
2019, 15lenltd 7134 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  ( A  x.  B )  <->  -.  ( A  x.  B )  <  0 ) )
2119, 12lenltd 7134 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
2218, 20, 213imtr4d 192 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  ( A  x.  B )  ->  0  <_  B ) )
2322impr 361 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  ( A  x.  B ) ) )  ->  0  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    e. wcel 1393   class class class wbr 3764  (class class class)co 5512   RRcr 6888   0cc0 6889    x. cmul 6894    < clt 7060    <_ cle 7061   -ucneg 7183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltadd 7000  ax-pre-mulgt0 7001
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185
This theorem is referenced by:  prodge02  7821  prodge0i  7875
  Copyright terms: Public domain W3C validator