ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch Unicode version

Theorem prarloclemarch 6516
Description: A version of the Archimedean property. This variation is "stronger" than archnqq 6515 in the sense that we provide an integer which is larger than a given rational  A even after being multiplied by a second rational  B. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
prarloclemarch  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem prarloclemarch
StepHypRef Expression
1 recclnq 6490 . . . 4  |-  ( B  e.  Q.  ->  ( *Q `  B )  e. 
Q. )
2 mulclnq 6474 . . . 4  |-  ( ( A  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( A  .Q  ( *Q `  B ) )  e.  Q. )
31, 2sylan2 270 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  ( *Q `  B ) )  e.  Q. )
4 archnqq 6515 . . 3  |-  ( ( A  .Q  ( *Q
`  B ) )  e.  Q.  ->  E. x  e.  N.  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  )
53, 4syl 14 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  ( A  .Q  ( *Q `  B ) ) 
<Q  [ <. x ,  1o >. ]  ~Q  )
6 simpll 481 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  A  e.  Q. )
7 1pi 6413 . . . . . . . . . . 11  |-  1o  e.  N.
8 opelxpi 4376 . . . . . . . . . . 11  |-  ( ( x  e.  N.  /\  1o  e.  N. )  ->  <. x ,  1o >.  e.  ( N.  X.  N. ) )
97, 8mpan2 401 . . . . . . . . . 10  |-  ( x  e.  N.  ->  <. x ,  1o >.  e.  ( N.  X.  N. ) )
10 enqex 6458 . . . . . . . . . . 11  |-  ~Q  e.  _V
1110ecelqsi 6160 . . . . . . . . . 10  |-  ( <.
x ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. x ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
129, 11syl 14 . . . . . . . . 9  |-  ( x  e.  N.  ->  [ <. x ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
13 df-nqqs 6446 . . . . . . . . 9  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1412, 13syl6eleqr 2131 . . . . . . . 8  |-  ( x  e.  N.  ->  [ <. x ,  1o >. ]  ~Q  e.  Q. )
1514adantl 262 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  [ <. x ,  1o >. ]  ~Q  e.  Q. )
16 simplr 482 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  B  e.  Q. )
17 mulclnq 6474 . . . . . . 7  |-  ( ( [ <. x ,  1o >. ]  ~Q  e.  Q.  /\  B  e.  Q. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  B )  e.  Q. )
1815, 16, 17syl2anc 391 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  B )  e.  Q. )
1916, 1syl 14 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( *Q `  B )  e.  Q. )
20 ltmnqg 6499 . . . . . 6  |-  ( ( A  e.  Q.  /\  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( ( *Q
`  B )  .Q  A )  <Q  (
( *Q `  B
)  .Q  ( [
<. x ,  1o >. ]  ~Q  .Q  B ) ) ) )
216, 18, 19, 20syl3anc 1135 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( ( *Q
`  B )  .Q  A )  <Q  (
( *Q `  B
)  .Q  ( [
<. x ,  1o >. ]  ~Q  .Q  B ) ) ) )
22 mulcomnqg 6481 . . . . . . 7  |-  ( ( ( *Q `  B
)  e.  Q.  /\  A  e.  Q. )  ->  ( ( *Q `  B )  .Q  A
)  =  ( A  .Q  ( *Q `  B ) ) )
2319, 6, 22syl2anc 391 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  A )  =  ( A  .Q  ( *Q
`  B ) ) )
24 mulcomnqg 6481 . . . . . . . 8  |-  ( ( ( *Q `  B
)  e.  Q.  /\  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  e.  Q. )  ->  ( ( *Q `  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
) )  =  ( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) ) )
2519, 18, 24syl2anc 391 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )  =  ( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) ) )
26 mulassnqg 6482 . . . . . . . . 9  |-  ( ( [ <. x ,  1o >. ]  ~Q  e.  Q.  /\  B  e.  Q.  /\  ( *Q `  B )  e.  Q. )  -> 
( ( [ <. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) ) )
2715, 16, 19, 26syl3anc 1135 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( [
<. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) ) )
28 recidnq 6491 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  ( B  .Q  ( *Q `  B ) )  =  1Q )
2928oveq2d 5528 . . . . . . . . 9  |-  ( B  e.  Q.  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q ) )
3016, 29syl 14 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  ( B  .Q  ( *Q `  B ) ) )  =  ( [
<. x ,  1o >. ]  ~Q  .Q  1Q ) )
31 mulidnq 6487 . . . . . . . . 9  |-  ( [
<. x ,  1o >. ]  ~Q  e.  Q.  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q )  =  [ <. x ,  1o >. ]  ~Q  )
3215, 31syl 14 . . . . . . . 8  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  1Q )  =  [ <. x ,  1o >. ]  ~Q  )
3327, 30, 323eqtrd 2076 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( [
<. x ,  1o >. ]  ~Q  .Q  B )  .Q  ( *Q `  B ) )  =  [ <. x ,  1o >. ]  ~Q  )
3425, 33eqtrd 2072 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( *Q
`  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )  =  [ <. x ,  1o >. ]  ~Q  )
3523, 34breq12d 3777 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( ( *Q `  B )  .Q  A )  <Q 
( ( *Q `  B )  .Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
) )  <->  ( A  .Q  ( *Q `  B
) )  <Q  [ <. x ,  1o >. ]  ~Q  ) )
3621, 35bitrd 177 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B
)  <->  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  )
)
3736biimprd 147 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  x  e.  N. )  ->  ( ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  ->  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) ) )
3837reximdva 2421 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( E. x  e. 
N.  ( A  .Q  ( *Q `  B ) )  <Q  [ <. x ,  1o >. ]  ~Q  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) ) )
395, 38mpd 13 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  E. x  e.  N.  A  <Q  ( [ <. x ,  1o >. ]  ~Q  .Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   E.wrex 2307   <.cop 3378   class class class wbr 3764    X. cxp 4343   ` cfv 4902  (class class class)co 5512   1oc1o 5994   [cec 6104   /.cqs 6105   N.cnpi 6370    ~Q ceq 6377   Q.cnq 6378   1Qc1q 6379    .Q cmq 6381   *Qcrq 6382    <Q cltq 6383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451
This theorem is referenced by:  prarloclemarch2  6517
  Copyright terms: Public domain W3C validator