ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.62dc Structured version   Unicode version

Theorem pm5.62dc 851
Description: Theorem *5.62 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
Assertion
Ref Expression
pm5.62dc DECID

Proof of Theorem pm5.62dc
StepHypRef Expression
1 df-dc 742 . 2 DECID
2 ordir 729 . . . 4
32simplbi 259 . . 3
42simplbi2 367 . . . 4
54com12 27 . . 3
63, 5impbid2 131 . 2
71, 6sylbi 114 1 DECID
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wb 98   wo 628  DECID wdc 741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator