Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.62dc | Unicode version |
Description: Theorem *5.62 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.) |
Ref | Expression |
---|---|
pm5.62dc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 743 | . 2 DECID | |
2 | ordir 730 | . . . 4 | |
3 | 2 | simplbi 259 | . . 3 |
4 | 2 | simplbi2 367 | . . . 4 |
5 | 4 | com12 27 | . . 3 |
6 | 3, 5 | impbid2 131 | . 2 |
7 | 1, 6 | sylbi 114 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 97 wb 98 wo 629 DECID wdc 742 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-dc 743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |