ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.66dc Unicode version

Theorem pm4.66dc 802
Description: Theorem *4.66 of [WhiteheadRussell] p. 120, given a decidability condition. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.66dc  |-  (DECID  ph  ->  ( ( -.  ph  ->  -. 
ps )  <->  ( ph  \/  -.  ps ) ) )

Proof of Theorem pm4.66dc
StepHypRef Expression
1 pm4.64dc 801 1  |-  (DECID  ph  ->  ( ( -.  ph  ->  -. 
ps )  <->  ( ph  \/  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 98    \/ wo 629  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  pm4.54dc  805
  Copyright terms: Public domain W3C validator