ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.18 Unicode version

Theorem pm13.18 2286
Description: Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.18  |-  ( ( A  =  B  /\  A  =/=  C )  ->  B  =/=  C )

Proof of Theorem pm13.18
StepHypRef Expression
1 eqeq1 2046 . . . 4  |-  ( A  =  B  ->  ( A  =  C  <->  B  =  C ) )
21biimprd 147 . . 3  |-  ( A  =  B  ->  ( B  =  C  ->  A  =  C ) )
32necon3d 2249 . 2  |-  ( A  =  B  ->  ( A  =/=  C  ->  B  =/=  C ) )
43imp 115 1  |-  ( ( A  =  B  /\  A  =/=  C )  ->  B  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    =/= wne 2204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-4 1400  ax-17 1419  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-ne 2206
This theorem is referenced by:  pm13.181  2287
  Copyright terms: Public domain W3C validator