| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phplem4dom | Unicode version | ||
| Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| phplem4dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 4318 |
. . . . . 6
| |
| 2 | 1 | adantl 262 |
. . . . 5
|
| 3 | brdomg 6229 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | biimpa 280 |
. . 3
|
| 6 | simpr 103 |
. . . . . . 7
| |
| 7 | 2 | ad2antrr 457 |
. . . . . . 7
|
| 8 | sssucid 4152 |
. . . . . . . 8
| |
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | simplll 485 |
. . . . . . 7
| |
| 11 | f1imaen2g 6273 |
. . . . . . 7
| |
| 12 | 6, 7, 9, 10, 11 | syl22anc 1136 |
. . . . . 6
|
| 13 | 12 | ensymd 6263 |
. . . . 5
|
| 14 | difexg 3898 |
. . . . . . 7
| |
| 15 | 7, 14 | syl 14 |
. . . . . 6
|
| 16 | nnord 4334 |
. . . . . . . . . 10
| |
| 17 | orddif 4271 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | 18 | imaeq2d 4668 |
. . . . . . . 8
|
| 20 | 10, 19 | syl 14 |
. . . . . . 7
|
| 21 | f1fn 5093 |
. . . . . . . . . . . 12
| |
| 22 | 21 | adantl 262 |
. . . . . . . . . . 11
|
| 23 | sucidg 4153 |
. . . . . . . . . . . 12
| |
| 24 | 10, 23 | syl 14 |
. . . . . . . . . . 11
|
| 25 | fnsnfv 5232 |
. . . . . . . . . . 11
| |
| 26 | 22, 24, 25 | syl2anc 391 |
. . . . . . . . . 10
|
| 27 | 26 | difeq2d 3062 |
. . . . . . . . 9
|
| 28 | df-f1 4907 |
. . . . . . . . . . . 12
| |
| 29 | 28 | simprbi 260 |
. . . . . . . . . . 11
|
| 30 | imadif 4979 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
|
| 32 | 31 | adantl 262 |
. . . . . . . . 9
|
| 33 | 27, 32 | eqtr4d 2075 |
. . . . . . . 8
|
| 34 | f1f 5092 |
. . . . . . . . . . 11
| |
| 35 | 34 | adantl 262 |
. . . . . . . . . 10
|
| 36 | imassrn 4679 |
. . . . . . . . . . 11
| |
| 37 | frn 5052 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | syl5ss 2956 |
. . . . . . . . . 10
|
| 39 | 35, 38 | syl 14 |
. . . . . . . . 9
|
| 40 | 39 | ssdifd 3079 |
. . . . . . . 8
|
| 41 | 33, 40 | eqsstr3d 2980 |
. . . . . . 7
|
| 42 | 20, 41 | eqsstrd 2979 |
. . . . . 6
|
| 43 | ssdomg 6258 |
. . . . . 6
| |
| 44 | 15, 42, 43 | sylc 56 |
. . . . 5
|
| 45 | endomtr 6270 |
. . . . 5
| |
| 46 | 13, 44, 45 | syl2anc 391 |
. . . 4
|
| 47 | simpllr 486 |
. . . . . 6
| |
| 48 | 35, 24 | ffvelrnd 5303 |
. . . . . 6
|
| 49 | phplem3g 6319 |
. . . . . 6
| |
| 50 | 47, 48, 49 | syl2anc 391 |
. . . . 5
|
| 51 | 50 | ensymd 6263 |
. . . 4
|
| 52 | domentr 6271 |
. . . 4
| |
| 53 | 46, 51, 52 | syl2anc 391 |
. . 3
|
| 54 | 5, 53 | exlimddv 1778 |
. 2
|
| 55 | 54 | ex 108 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
| This theorem depends on definitions: df-bi 110 df-dc 743 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-opab 3819 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-er 6106 df-en 6222 df-dom 6223 |
| This theorem is referenced by: php5dom 6325 |
| Copyright terms: Public domain | W3C validator |