ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nni Unicode version

Theorem peano5nni 7917
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Distinct variable group:    x, A

Proof of Theorem peano5nni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1re 7026 . . . 4  |-  1  e.  RR
2 elin 3126 . . . . 5  |-  ( 1  e.  ( A  i^i  RR )  <->  ( 1  e.  A  /\  1  e.  RR ) )
32biimpri 124 . . . 4  |-  ( ( 1  e.  A  /\  1  e.  RR )  ->  1  e.  ( A  i^i  RR ) )
41, 3mpan2 401 . . 3  |-  ( 1  e.  A  ->  1  e.  ( A  i^i  RR ) )
5 inss1 3157 . . . . 5  |-  ( A  i^i  RR )  C_  A
6 ssralv 3004 . . . . 5  |-  ( ( A  i^i  RR ) 
C_  A  ->  ( A. x  e.  A  ( x  +  1
)  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  +  1 )  e.  A ) )
75, 6ax-mp 7 . . . 4  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  A
)
8 inss2 3158 . . . . . . . 8  |-  ( A  i^i  RR )  C_  RR
98sseli 2941 . . . . . . 7  |-  ( x  e.  ( A  i^i  RR )  ->  x  e.  RR )
10 1red 7042 . . . . . . 7  |-  ( x  e.  ( A  i^i  RR )  ->  1  e.  RR )
119, 10readdcld 7055 . . . . . 6  |-  ( x  e.  ( A  i^i  RR )  ->  ( x  +  1 )  e.  RR )
12 elin 3126 . . . . . . 7  |-  ( ( x  +  1 )  e.  ( A  i^i  RR )  <->  ( ( x  +  1 )  e.  A  /\  ( x  +  1 )  e.  RR ) )
1312simplbi2com 1333 . . . . . 6  |-  ( ( x  +  1 )  e.  RR  ->  (
( x  +  1 )  e.  A  -> 
( x  +  1 )  e.  ( A  i^i  RR ) ) )
1411, 13syl 14 . . . . 5  |-  ( x  e.  ( A  i^i  RR )  ->  ( (
x  +  1 )  e.  A  ->  (
x  +  1 )  e.  ( A  i^i  RR ) ) )
1514ralimia 2382 . . . 4  |-  ( A. x  e.  ( A  i^i  RR ) ( x  +  1 )  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) )
167, 15syl 14 . . 3  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) )
17 reex 7015 . . . . 5  |-  RR  e.  _V
1817inex2 3892 . . . 4  |-  ( A  i^i  RR )  e. 
_V
19 eleq2 2101 . . . . . . 7  |-  ( y  =  ( A  i^i  RR )  ->  ( 1  e.  y  <->  1  e.  ( A  i^i  RR ) ) )
20 eleq2 2101 . . . . . . . 8  |-  ( y  =  ( A  i^i  RR )  ->  ( (
x  +  1 )  e.  y  <->  ( x  +  1 )  e.  ( A  i^i  RR ) ) )
2120raleqbi1dv 2513 . . . . . . 7  |-  ( y  =  ( A  i^i  RR )  ->  ( A. x  e.  y  (
x  +  1 )  e.  y  <->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) ) )
2219, 21anbi12d 442 . . . . . 6  |-  ( y  =  ( A  i^i  RR )  ->  ( (
1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y )  <->  ( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) ) ) )
2322elabg 2688 . . . . 5  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( A  i^i  RR )  e.  { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y ) }  <->  ( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) ) ) )
24 dfnn2 7916 . . . . . 6  |-  NN  =  |^| { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y ) }
25 intss1 3630 . . . . . 6  |-  ( ( A  i^i  RR )  e.  { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  + 
1 )  e.  y ) }  ->  |^| { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y ) }  C_  ( A  i^i  RR ) )
2624, 25syl5eqss 2989 . . . . 5  |-  ( ( A  i^i  RR )  e.  { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  + 
1 )  e.  y ) }  ->  NN  C_  ( A  i^i  RR ) )
2723, 26syl6bir 153 . . . 4  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) )  ->  NN  C_  ( A  i^i  RR ) ) )
2818, 27ax-mp 7 . . 3  |-  ( ( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  +  1 )  e.  ( A  i^i  RR ) )  ->  NN  C_  ( A  i^i  RR ) )
294, 16, 28syl2an 273 . 2  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  ( A  i^i  RR ) )
3029, 5syl6ss 2957 1  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   _Vcvv 2557    i^i cin 2916    C_ wss 2917   |^|cint 3615  (class class class)co 5512   RRcr 6888   1c1 6890    + caddc 6892   NNcn 7914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-cnex 6975  ax-resscn 6976  ax-1re 6978  ax-addrcl 6981
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-int 3616  df-inn 7915
This theorem is referenced by:  nnssre  7918  nnind  7930
  Copyright terms: Public domain W3C validator