ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pclem6 Structured version   Unicode version

Theorem pclem6 1264
Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof rewritten by Jim Kingdon, 4-May-2018.)
Assertion
Ref Expression
pclem6

Proof of Theorem pclem6
StepHypRef Expression
1 bi1 111 . . . . 5
2 pm3.4 316 . . . . . 6
32com12 27 . . . . 5
41, 3syl9r 67 . . . 4
5 ax-ia3 101 . . . . 5
6 bi2 121 . . . . 5
75, 6syl9 66 . . . 4
84, 7impbidd 118 . . 3
9 pm5.19 621 . . . 4
109pm2.21i 574 . . 3
118, 10syl6com 31 . 2
12 dfnot 1261 . 2
1311, 12sylibr 137 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wb 98   wfal 1247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248
This theorem is referenced by:  nalset  3877  pwnss  3902  bj-nalset  8945
  Copyright terms: Public domain W3C validator