Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordpwsucexmid | Unicode version |
Description: The subset in ordpwsucss 4291 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.) |
Ref | Expression |
---|---|
ordpwsucexmid.1 |
Ref | Expression |
---|---|
ordpwsucexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 3917 | . . . . 5 | |
2 | 0elon 4129 | . . . . 5 | |
3 | elin 3126 | . . . . 5 | |
4 | 1, 2, 3 | mpbir2an 849 | . . . 4 |
5 | ordtriexmidlem 4245 | . . . . 5 | |
6 | suceq 4139 | . . . . . . 7 | |
7 | pweq 3362 | . . . . . . . 8 | |
8 | 7 | ineq1d 3137 | . . . . . . 7 |
9 | 6, 8 | eqeq12d 2054 | . . . . . 6 |
10 | ordpwsucexmid.1 | . . . . . 6 | |
11 | 9, 10 | vtoclri 2628 | . . . . 5 |
12 | 5, 11 | ax-mp 7 | . . . 4 |
13 | 4, 12 | eleqtrri 2113 | . . 3 |
14 | elsuci 4140 | . . 3 | |
15 | 13, 14 | ax-mp 7 | . 2 |
16 | 0ex 3884 | . . . . . 6 | |
17 | 16 | snid 3402 | . . . . 5 |
18 | biidd 161 | . . . . . 6 | |
19 | 18 | elrab3 2699 | . . . . 5 |
20 | 17, 19 | ax-mp 7 | . . . 4 |
21 | 20 | biimpi 113 | . . 3 |
22 | ordtriexmidlem2 4246 | . . . 4 | |
23 | 22 | eqcoms 2043 | . . 3 |
24 | 21, 23 | orim12i 676 | . 2 |
25 | 15, 24 | ax-mp 7 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 98 wo 629 wceq 1243 wcel 1393 wral 2306 crab 2310 cin 2916 c0 3224 cpw 3359 csn 3375 con0 4100 csuc 4102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-uni 3581 df-tr 3855 df-iord 4103 df-on 4105 df-suc 4108 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |