ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucexmid Unicode version

Theorem ordpwsucexmid 4294
Description: The subset in ordpwsucss 4291 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.)
Hypothesis
Ref Expression
ordpwsucexmid.1  |-  A. x  e.  On  suc  x  =  ( ~P x  i^i 
On )
Assertion
Ref Expression
ordpwsucexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem ordpwsucexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0elpw 3917 . . . . 5  |-  (/)  e.  ~P { z  e.  { (/)
}  |  ph }
2 0elon 4129 . . . . 5  |-  (/)  e.  On
3 elin 3126 . . . . 5  |-  ( (/)  e.  ( ~P { z  e.  { (/) }  |  ph }  i^i  On )  <-> 
( (/)  e.  ~P {
z  e.  { (/) }  |  ph }  /\  (/) 
e.  On ) )
41, 2, 3mpbir2an 849 . . . 4  |-  (/)  e.  ( ~P { z  e. 
{ (/) }  |  ph }  i^i  On )
5 ordtriexmidlem 4245 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  On
6 suceq 4139 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { z  e.  { (/)
}  |  ph }
)
7 pweq 3362 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ~P x  =  ~P { z  e. 
{ (/) }  |  ph } )
87ineq1d 3137 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ~P x  i^i  On )  =  ( ~P { z  e. 
{ (/) }  |  ph }  i^i  On ) )
96, 8eqeq12d 2054 . . . . . 6  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( suc  x  =  ( ~P x  i^i  On )  <->  suc  { z  e.  { (/) }  |  ph }  =  ( ~P { z  e.  { (/)
}  |  ph }  i^i  On ) ) )
10 ordpwsucexmid.1 . . . . . 6  |-  A. x  e.  On  suc  x  =  ( ~P x  i^i 
On )
119, 10vtoclri 2628 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  suc  { z  e.  { (/) }  |  ph }  =  ( ~P { z  e.  { (/)
}  |  ph }  i^i  On ) )
125, 11ax-mp 7 . . . 4  |-  suc  {
z  e.  { (/) }  |  ph }  =  ( ~P { z  e. 
{ (/) }  |  ph }  i^i  On )
134, 12eleqtrri 2113 . . 3  |-  (/)  e.  suc  { z  e.  { (/) }  |  ph }
14 elsuci 4140 . . 3  |-  ( (/)  e.  suc  { z  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  {
z  e.  { (/) }  |  ph }  \/  (/)  =  { z  e. 
{ (/) }  |  ph } ) )
1513, 14ax-mp 7 . 2  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  \/  (/)  =  { z  e.  { (/) }  |  ph } )
16 0ex 3884 . . . . . 6  |-  (/)  e.  _V
1716snid 3402 . . . . 5  |-  (/)  e.  { (/)
}
18 biidd 161 . . . . . 6  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
1918elrab3 2699 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
2017, 19ax-mp 7 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
2120biimpi 113 . . 3  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
22 ordtriexmidlem2 4246 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
2322eqcoms 2043 . . 3  |-  ( (/)  =  { z  e.  { (/)
}  |  ph }  ->  -.  ph )
2421, 23orim12i 676 . 2  |-  ( (
(/)  e.  { z  e.  { (/) }  |  ph }  \/  (/)  =  {
z  e.  { (/) }  |  ph } )  ->  ( ph  \/  -.  ph ) )
2515, 24ax-mp 7 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 98    \/ wo 629    = wceq 1243    e. wcel 1393   A.wral 2306   {crab 2310    i^i cin 2916   (/)c0 3224   ~Pcpw 3359   {csn 3375   Oncon0 4100   suc csuc 4102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-uni 3581  df-tr 3855  df-iord 4103  df-on 4105  df-suc 4108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator