Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordirr | Unicode version |
Description: Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. (Contributed by NM, 2-Jan-1994.) |
Ref | Expression |
---|---|
ordirr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4266 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 1393 word 4099 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-v 2559 df-dif 2920 df-sn 3381 |
This theorem is referenced by: nordeq 4268 ordn2lp 4269 orddisj 4270 onprc 4276 nlimsucg 4290 addnidpig 6434 frecfzennn 9203 |
Copyright terms: Public domain | W3C validator |