Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  orddisj Unicode version

Theorem orddisj 4270
 Description: An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
orddisj

Proof of Theorem orddisj
StepHypRef Expression
1 ordirr 4267 . 2
2 disjsn 3432 . 2
31, 2sylibr 137 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wceq 1243   wcel 1393   cin 2916  c0 3224  csn 3375   word 4099 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-setind 4262 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-v 2559  df-dif 2920  df-in 2924  df-nul 3225  df-sn 3381 This theorem is referenced by:  orddif  4271  phplem2  6316
 Copyright terms: Public domain W3C validator