Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprabexd | Unicode version |
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
oprabexd.1 | |
oprabexd.2 | |
oprabexd.3 | |
oprabexd.4 |
Ref | Expression |
---|---|
oprabexd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabexd.4 | . 2 | |
2 | oprabexd.3 | . . . . . . 7 | |
3 | 2 | ex 108 | . . . . . 6 |
4 | moanimv 1975 | . . . . . 6 | |
5 | 3, 4 | sylibr 137 | . . . . 5 |
6 | 5 | alrimivv 1755 | . . . 4 |
7 | funoprabg 5600 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | dmoprabss 5586 | . . . 4 | |
10 | oprabexd.1 | . . . . 5 | |
11 | oprabexd.2 | . . . . 5 | |
12 | xpexg 4452 | . . . . 5 | |
13 | 10, 11, 12 | syl2anc 391 | . . . 4 |
14 | ssexg 3896 | . . . 4 | |
15 | 9, 13, 14 | sylancr 393 | . . 3 |
16 | funex 5384 | . . 3 | |
17 | 8, 15, 16 | syl2anc 391 | . 2 |
18 | 1, 17 | eqeltrd 2114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wal 1241 wceq 1243 wcel 1393 wmo 1901 cvv 2557 wss 2917 cxp 4343 cdm 4345 wfun 4896 coprab 5513 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-oprab 5516 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |