ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc Unicode version

Theorem opprc 3570
Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )

Proof of Theorem opprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-op 3384 . 2  |-  <. A ,  B >.  =  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
2 3simpa 901 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } )  ->  ( A  e.  _V  /\  B  e.  _V ) )
32con3i 562 . . . 4  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) )
43alrimiv 1754 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  A. x  -.  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } ) )
5 abeq0 3248 . . 3  |-  ( { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } ) }  =  (/)  <->  A. x  -.  ( A  e.  _V  /\  B  e.  _V  /\  x  e. 
{ { A } ,  { A ,  B } } ) )
64, 5sylibr 137 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }  =  (/) )
71, 6syl5eq 2084 1  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    /\ w3a 885   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026   _Vcvv 2557   (/)c0 3224   {csn 3375   {cpr 3376   <.cop 3378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-nul 3225  df-op 3384
This theorem is referenced by:  opprc1  3571  opprc2  3572  ovprc  5540
  Copyright terms: Public domain W3C validator