ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbrex Unicode version

Theorem opabbrex 5549
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
Hypotheses
Ref Expression
opabbrex.1  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( f ( V W E ) p  ->  th ) )
opabbrex.2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  th }  e.  _V )
Assertion
Ref Expression
opabbrex  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  e.  _V )
Distinct variable groups:    f, E, p   
f, V, p
Allowed substitution hints:    ps( f, p)    th( f, p)    W( f, p)

Proof of Theorem opabbrex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 3819 . . 3  |-  { <. f ,  p >.  |  th }  =  { z  |  E. f E. p
( z  =  <. f ,  p >.  /\  th ) }
2 opabbrex.2 . . 3  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  th }  e.  _V )
31, 2syl5eqelr 2125 . 2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { z  |  E. f E. p ( z  =  <. f ,  p >.  /\  th ) }  e.  _V )
4 df-opab 3819 . . 3  |-  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  =  {
z  |  E. f E. p ( z  = 
<. f ,  p >.  /\  ( f ( V W E ) p  /\  ps ) ) }
5 opabbrex.1 . . . . . . 7  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( f ( V W E ) p  ->  th ) )
65adantrd 264 . . . . . 6  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( f ( V W E ) p  /\  ps )  ->  th ) )
76anim2d 320 . . . . 5  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( z  = 
<. f ,  p >.  /\  ( f ( V W E ) p  /\  ps ) )  ->  ( z  = 
<. f ,  p >.  /\ 
th ) ) )
872eximdv 1762 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( E. f E. p ( z  = 
<. f ,  p >.  /\  ( f ( V W E ) p  /\  ps ) )  ->  E. f E. p
( z  =  <. f ,  p >.  /\  th ) ) )
98ss2abdv 3013 . . 3  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { z  |  E. f E. p ( z  =  <. f ,  p >.  /\  ( f ( V W E ) p  /\  ps )
) }  C_  { z  |  E. f E. p ( z  = 
<. f ,  p >.  /\ 
th ) } )
104, 9syl5eqss 2989 . 2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  C_  { z  |  E. f E. p
( z  =  <. f ,  p >.  /\  th ) } )
113, 10ssexd 3897 1  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393   {cab 2026   _Vcvv 2557   <.cop 3378   class class class wbr 3764   {copab 3817  (class class class)co 5512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-opab 3819
This theorem is referenced by:  sprmpt2  5857
  Copyright terms: Public domain W3C validator