ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunsnss Unicode version

Theorem onunsnss 6355
Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
Assertion
Ref Expression
onunsnss  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  B  C_  A
)

Proof of Theorem onunsnss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elirr 4266 . . . . 5  |-  -.  B  e.  B
2 elsni 3393 . . . . . . . 8  |-  ( x  e.  { B }  ->  x  =  B )
32adantl 262 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  ( A  u.  { B }
)  e.  On )  /\  x  e.  B
)  /\  x  e.  { B } )  ->  x  =  B )
4 simplr 482 . . . . . . 7  |-  ( ( ( ( B  e.  V  /\  ( A  u.  { B }
)  e.  On )  /\  x  e.  B
)  /\  x  e.  { B } )  ->  x  e.  B )
53, 4eqeltrrd 2115 . . . . . 6  |-  ( ( ( ( B  e.  V  /\  ( A  u.  { B }
)  e.  On )  /\  x  e.  B
)  /\  x  e.  { B } )  ->  B  e.  B )
65ex 108 . . . . 5  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  ( x  e.  { B }  ->  B  e.  B ) )
71, 6mtoi 590 . . . 4  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  -.  x  e.  { B } )
8 snidg 3400 . . . . . . . . 9  |-  ( B  e.  V  ->  B  e.  { B } )
9 elun2 3111 . . . . . . . . 9  |-  ( B  e.  { B }  ->  B  e.  ( A  u.  { B }
) )
108, 9syl 14 . . . . . . . 8  |-  ( B  e.  V  ->  B  e.  ( A  u.  { B } ) )
1110adantr 261 . . . . . . 7  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  B  e.  ( A  u.  { B } ) )
12 ontr1 4126 . . . . . . . 8  |-  ( ( A  u.  { B } )  e.  On  ->  ( ( x  e.  B  /\  B  e.  ( A  u.  { B } ) )  ->  x  e.  ( A  u.  { B } ) ) )
1312adantl 262 . . . . . . 7  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  ( ( x  e.  B  /\  B  e.  ( A  u.  { B } ) )  ->  x  e.  ( A  u.  { B } ) ) )
1411, 13mpan2d 404 . . . . . 6  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  ( x  e.  B  ->  x  e.  ( A  u.  { B } ) ) )
1514imp 115 . . . . 5  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  x  e.  ( A  u.  { B } ) )
16 elun 3084 . . . . 5  |-  ( x  e.  ( A  u.  { B } )  <->  ( x  e.  A  \/  x  e.  { B } ) )
1715, 16sylib 127 . . . 4  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  ( x  e.  A  \/  x  e.  { B } ) )
187, 17ecased 1239 . . 3  |-  ( ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  /\  x  e.  B
)  ->  x  e.  A )
1918ex 108 . 2  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  ( x  e.  B  ->  x  e.  A ) )
2019ssrdv 2951 1  |-  ( ( B  e.  V  /\  ( A  u.  { B } )  e.  On )  ->  B  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    \/ wo 629    = wceq 1243    e. wcel 1393    u. cun 2915    C_ wss 2917   {csn 3375   Oncon0 4100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-uni 3581  df-tr 3855  df-iord 4103  df-on 4105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator