| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucelsucexmid | Unicode version | ||
| Description: The converse of onsucelsucr 4234 implies excluded middle. On the other
hand, if |
| Ref | Expression |
|---|---|
| onsucelsucexmid.1 |
|
| Ref | Expression |
|---|---|
| onsucelsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucelsucexmidlem1 4253 |
. . . 4
| |
| 2 | 0elon 4129 |
. . . . . 6
| |
| 3 | onsucelsucexmidlem 4254 |
. . . . . 6
| |
| 4 | 2, 3 | pm3.2i 257 |
. . . . 5
|
| 5 | onsucelsucexmid.1 |
. . . . 5
| |
| 6 | eleq1 2100 |
. . . . . . 7
| |
| 7 | suceq 4139 |
. . . . . . . 8
| |
| 8 | 7 | eleq1d 2106 |
. . . . . . 7
|
| 9 | 6, 8 | imbi12d 223 |
. . . . . 6
|
| 10 | eleq2 2101 |
. . . . . . 7
| |
| 11 | suceq 4139 |
. . . . . . . 8
| |
| 12 | 11 | eleq2d 2107 |
. . . . . . 7
|
| 13 | 10, 12 | imbi12d 223 |
. . . . . 6
|
| 14 | 9, 13 | rspc2va 2663 |
. . . . 5
|
| 15 | 4, 5, 14 | mp2an 402 |
. . . 4
|
| 16 | 1, 15 | ax-mp 7 |
. . 3
|
| 17 | elsuci 4140 |
. . 3
| |
| 18 | 16, 17 | ax-mp 7 |
. 2
|
| 19 | suc0 4148 |
. . . . . 6
| |
| 20 | p0ex 3939 |
. . . . . . 7
| |
| 21 | 20 | prid2 3477 |
. . . . . 6
|
| 22 | 19, 21 | eqeltri 2110 |
. . . . 5
|
| 23 | eqeq1 2046 |
. . . . . . 7
| |
| 24 | 23 | orbi1d 705 |
. . . . . 6
|
| 25 | 24 | elrab3 2699 |
. . . . 5
|
| 26 | 22, 25 | ax-mp 7 |
. . . 4
|
| 27 | 0ex 3884 |
. . . . . . 7
| |
| 28 | nsuceq0g 4155 |
. . . . . . 7
| |
| 29 | 27, 28 | ax-mp 7 |
. . . . . 6
|
| 30 | df-ne 2206 |
. . . . . 6
| |
| 31 | 29, 30 | mpbi 133 |
. . . . 5
|
| 32 | pm2.53 641 |
. . . . 5
| |
| 33 | 31, 32 | mpi 15 |
. . . 4
|
| 34 | 26, 33 | sylbi 114 |
. . 3
|
| 35 | 19 | eqeq1i 2047 |
. . . . 5
|
| 36 | 19 | eqeq1i 2047 |
. . . . . . . 8
|
| 37 | 31, 36 | mtbi 595 |
. . . . . . 7
|
| 38 | 20 | elsn 3391 |
. . . . . . 7
|
| 39 | 37, 38 | mtbir 596 |
. . . . . 6
|
| 40 | eleq2 2101 |
. . . . . 6
| |
| 41 | 39, 40 | mtbii 599 |
. . . . 5
|
| 42 | 35, 41 | sylbi 114 |
. . . 4
|
| 43 | olc 632 |
. . . . 5
| |
| 44 | eqeq1 2046 |
. . . . . . . 8
| |
| 45 | 44 | orbi1d 705 |
. . . . . . 7
|
| 46 | 45 | elrab3 2699 |
. . . . . 6
|
| 47 | 21, 46 | ax-mp 7 |
. . . . 5
|
| 48 | 43, 47 | sylibr 137 |
. . . 4
|
| 49 | 42, 48 | nsyl 558 |
. . 3
|
| 50 | 34, 49 | orim12i 676 |
. 2
|
| 51 | 18, 50 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 |
| This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-uni 3581 df-tr 3855 df-iord 4103 df-on 4105 df-suc 4108 |
| This theorem is referenced by: ordsucunielexmid 4256 |
| Copyright terms: Public domain | W3C validator |