ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiexg Unicode version

Theorem oeiexg 6033
Description: Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
oeiexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A𝑜  B )  e.  _V )

Proof of Theorem oeiexg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2560 . . . 4  |-  y  e. 
_V
2 1on 6008 . . . . . 6  |-  1o  e.  On
32elexi 2567 . . . . 5  |-  1o  e.  _V
4 vex 2560 . . . . . . 7  |-  z  e. 
_V
5 vex 2560 . . . . . . 7  |-  x  e. 
_V
6 omexg 6031 . . . . . . 7  |-  ( ( z  e.  _V  /\  x  e.  _V )  ->  ( z  .o  x
)  e.  _V )
74, 5, 6mp2an 402 . . . . . 6  |-  ( z  .o  x )  e. 
_V
8 eqid 2040 . . . . . 6  |-  ( z  e.  _V  |->  ( z  .o  x ) )  =  ( z  e. 
_V  |->  ( z  .o  x ) )
97, 8fnmpti 5027 . . . . 5  |-  ( z  e.  _V  |->  ( z  .o  x ) )  Fn  _V
103, 9rdgexg 5976 . . . 4  |-  ( y  e.  _V  ->  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)  e.  _V )
111, 10ax-mp 7 . . 3  |-  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)  e.  _V
1211gen2 1339 . 2  |-  A. x A. y ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )  e.  _V
13 df-oexpi 6007 . . 3  |-𝑜  =  ( x  e.  On ,  y  e.  On  |->  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)
1413mpt2fvex 5829 . 2  |-  ( ( A. x A. y
( rec ( ( z  e.  _V  |->  ( z  .o  x ) ) ,  1o ) `
 y )  e. 
_V  /\  A  e.  V  /\  B  e.  W
)  ->  ( A𝑜  B )  e.  _V )
1512, 14mp3an1 1219 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A𝑜  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    e. wcel 1393   _Vcvv 2557    |-> cmpt 3818   Oncon0 4100   ` cfv 4902  (class class class)co 5512   reccrdg 5956   1oc1o 5994    .o comu 5999   ↑𝑜 coei 6000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-oexpi 6007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator