Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nordeq | Unicode version |
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
nordeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 4267 | . . . 4 | |
2 | eleq1 2100 | . . . . 5 | |
3 | 2 | notbid 592 | . . . 4 |
4 | 1, 3 | syl5ibcom 144 | . . 3 |
5 | 4 | necon2ad 2262 | . 2 |
6 | 5 | imp 115 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 97 wceq 1243 wcel 1393 wne 2204 word 4099 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-v 2559 df-dif 2920 df-sn 3381 |
This theorem is referenced by: phplem1 6315 |
Copyright terms: Public domain | W3C validator |