ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsuc Unicode version

Theorem nnsuc 4338
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
nnsuc  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  E. x  e.  om  A  =  suc  x )
Distinct variable group:    x, A

Proof of Theorem nnsuc
StepHypRef Expression
1 df-ne 2206 . 2  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
2 nn0suc 4327 . . . 4  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
32ord 643 . . 3  |-  ( A  e.  om  ->  ( -.  A  =  (/)  ->  E. x  e.  om  A  =  suc  x ) )
43imp 115 . 2  |-  ( ( A  e.  om  /\  -.  A  =  (/) )  ->  E. x  e.  om  A  =  suc  x )
51, 4sylan2b 271 1  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  E. x  e.  om  A  =  suc  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393    =/= wne 2204   E.wrex 2307   (/)c0 3224   suc csuc 4102   omcom 4313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-int 3616  df-suc 4108  df-iom 4314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator