Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnord | Unicode version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4332 | . 2 | |
2 | eloni 4112 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 1393 word 4099 con0 4100 com 4313 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-uni 3581 df-int 3616 df-tr 3855 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 |
This theorem is referenced by: nnsucsssuc 6071 nntri1 6074 nnsseleq 6079 phplem1 6315 phplem2 6316 phplem3 6317 phplem4 6318 phplem4dom 6324 nndomo 6326 dif1en 6337 nnwetri 6354 piord 6409 addnidpig 6434 archnqq 6515 frecfzennn 9203 |
Copyright terms: Public domain | W3C validator |