ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnq0lem1 Unicode version

Theorem nnnq0lem1 6544
Description: Decomposing non-negative fractions into natural numbers. Lemma for addnnnq0 6547 and mulnnnq0 6548. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
nnnq0lem1  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
Distinct variable groups:    z, w, v, u, t, s, q, f, g, h, A   
z, B, w, v, u, t, s, q, f, g, h
Allowed substitution hints:    C( z, w, v, u, t, f, g, h, s, q)    D( z, w, v, u, t, f, g, h, s, q)

Proof of Theorem nnnq0lem1
StepHypRef Expression
1 enq0er 6533 . . . . . 6  |- ~Q0  Er  ( om  X.  N. )
2 erdm 6116 . . . . . 6  |-  ( ~Q0  Er  ( om  X.  N. )  ->  dom ~Q0  =  ( om  X.  N. ) )
31, 2ax-mp 7 . . . . 5  |-  dom ~Q0  =  ( om  X.  N. )
4 simpll 481 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  A  e.  ( ( om  X.  N. ) /. ~Q0  ) )
5 simplll 485 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  A  =  [ <. w ,  v
>. ] ~Q0  )
65eleq1d 2106 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. w ,  v >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
76adantl 262 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( A  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. w ,  v
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
84, 7mpbid 135 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. w ,  v
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
9 ecelqsdm 6176 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. w ,  v >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. w ,  v >.  e.  ( om  X.  N. )
)
103, 8, 9sylancr 393 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. w ,  v >.  e.  ( om  X.  N. ) )
11 opelxp 4374 . . . 4  |-  ( <.
w ,  v >.  e.  ( om  X.  N. ) 
<->  ( w  e.  om  /\  v  e.  N. )
)
1210, 11sylib 127 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( w  e.  om  /\  v  e.  N. )
)
13 simprll 489 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  A  =  [ <. s ,  f
>. ] ~Q0  )
1413eleq1d 2106 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. s ,  f >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
1514adantl 262 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( A  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. s ,  f
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
164, 15mpbid 135 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. s ,  f
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
17 ecelqsdm 6176 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. s ,  f >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. s ,  f >.  e.  ( om  X.  N. )
)
183, 16, 17sylancr 393 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. s ,  f >.  e.  ( om  X.  N. ) )
19 opelxp 4374 . . . 4  |-  ( <.
s ,  f >.  e.  ( om  X.  N. ) 
<->  ( s  e.  om  /\  f  e.  N. )
)
2018, 19sylib 127 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( s  e.  om  /\  f  e.  N. )
)
2112, 20jca 290 . 2  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( w  e. 
om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
) )
22 simplr 482 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )
23 simpllr 486 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  B  =  [ <. u ,  t
>. ] ~Q0  )
2423eleq1d 2106 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( B  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. u ,  t >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
2524adantl 262 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( B  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. u ,  t
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
2622, 25mpbid 135 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. u ,  t
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
27 ecelqsdm 6176 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. u ,  t >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. u ,  t >.  e.  ( om  X.  N. )
)
283, 26, 27sylancr 393 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. u ,  t >.  e.  ( om  X.  N. ) )
29 opelxp 4374 . . . 4  |-  ( <.
u ,  t >.  e.  ( om  X.  N. ) 
<->  ( u  e.  om  /\  t  e.  N. )
)
3028, 29sylib 127 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( u  e.  om  /\  t  e.  N. )
)
31 simprlr 490 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  B  =  [ <. g ,  h >. ] ~Q0  )
3231eleq1d 2106 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( B  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. g ,  h >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
3332adantl 262 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( B  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. g ,  h >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
3422, 33mpbid 135 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. g ,  h >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
35 ecelqsdm 6176 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. g ,  h >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. g ,  h >.  e.  ( om  X.  N. ) )
363, 34, 35sylancr 393 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. g ,  h >.  e.  ( om  X.  N. ) )
37 opelxp 4374 . . . 4  |-  ( <.
g ,  h >.  e.  ( om  X.  N. ) 
<->  ( g  e.  om  /\  h  e.  N. )
)
3836, 37sylib 127 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( g  e.  om  /\  h  e.  N. )
)
3930, 38jca 290 . 2  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( u  e. 
om  /\  t  e.  N. )  /\  (
g  e.  om  /\  h  e.  N. )
) )
405, 13eqtr3d 2074 . . . . . 6  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  [ <. w ,  v >. ] ~Q0  =  [ <. s ,  f >. ] ~Q0  )
4140adantl 262 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. w ,  v
>. ] ~Q0  =  [ <. s ,  f
>. ] ~Q0  )
421a1i 9 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> ~Q0  Er  ( om  X.  N. ) )
4342, 10erth 6150 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. w ,  v
>. ~Q0  <. s ,  f >.  <->  [ <. w ,  v >. ] ~Q0  =  [ <. s ,  f >. ] ~Q0  ) )
4441, 43mpbird 156 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. w ,  v >. ~Q0  <. s ,  f >. )
45 enq0breq 6534 . . . . 5  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
)  ->  ( <. w ,  v >. ~Q0 
<. s ,  f >.  <->  ( w  .o  f )  =  ( v  .o  s ) ) )
4612, 20, 45syl2anc 391 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. w ,  v
>. ~Q0  <. s ,  f >.  <->  ( w  .o  f )  =  ( v  .o  s ) ) )
4744, 46mpbid 135 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( w  .o  f
)  =  ( v  .o  s ) )
4823, 31eqtr3d 2074 . . . . . 6  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  [ <. u ,  t >. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
4948adantl 262 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. u ,  t
>. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
5042, 28erth 6150 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. u ,  t
>. ~Q0  <. g ,  h >.  <->  [ <. u ,  t >. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  ) )
5149, 50mpbird 156 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. u ,  t >. ~Q0  <. g ,  h >. )
52 enq0breq 6534 . . . . 5  |-  ( ( ( u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
)  ->  ( <. u ,  t >. ~Q0 
<. g ,  h >.  <->  (
u  .o  h )  =  ( t  .o  g ) ) )
5330, 38, 52syl2anc 391 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. u ,  t
>. ~Q0  <. g ,  h >.  <->  ( u  .o  h )  =  ( t  .o  g ) ) )
5451, 53mpbid 135 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( u  .o  h
)  =  ( t  .o  g ) )
5547, 54jca 290 . 2  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( w  .o  f )  =  ( v  .o  s )  /\  ( u  .o  h )  =  ( t  .o  g ) ) )
5621, 39, 55jca31 292 1  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764   omcom 4313    X. cxp 4343   dom cdm 4345  (class class class)co 5512    .o comu 5999    Er wer 6103   [cec 6104   /.cqs 6105   N.cnpi 6370   ~Q0 ceq0 6384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-enq0 6522
This theorem is referenced by:  addnq0mo  6545  mulnq0mo  6546
  Copyright terms: Public domain W3C validator