ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm1nn0 Unicode version

Theorem nnm1nn0 8223
Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnm1nn0  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )

Proof of Theorem nnm1nn0
StepHypRef Expression
1 nn1m1nn 7932 . . . 4  |-  ( N  e.  NN  ->  ( N  =  1  \/  ( N  -  1
)  e.  NN ) )
2 oveq1 5519 . . . . . 6  |-  ( N  =  1  ->  ( N  -  1 )  =  ( 1  -  1 ) )
3 1m1e0 7984 . . . . . 6  |-  ( 1  -  1 )  =  0
42, 3syl6eq 2088 . . . . 5  |-  ( N  =  1  ->  ( N  -  1 )  =  0 )
54orim1i 677 . . . 4  |-  ( ( N  =  1  \/  ( N  -  1 )  e.  NN )  ->  ( ( N  -  1 )  =  0  \/  ( N  -  1 )  e.  NN ) )
61, 5syl 14 . . 3  |-  ( N  e.  NN  ->  (
( N  -  1 )  =  0  \/  ( N  -  1 )  e.  NN ) )
76orcomd 648 . 2  |-  ( N  e.  NN  ->  (
( N  -  1 )  e.  NN  \/  ( N  -  1
)  =  0 ) )
8 elnn0 8183 . 2  |-  ( ( N  -  1 )  e.  NN0  <->  ( ( N  -  1 )  e.  NN  \/  ( N  -  1 )  =  0 ) )
97, 8sylibr 137 1  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 629    = wceq 1243    e. wcel 1393  (class class class)co 5512   0cc0 6889   1c1 6890    - cmin 7182   NNcn 7914   NN0cn0 8181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-sub 7184  df-inn 7915  df-n0 8182
This theorem is referenced by:  elnn0nn  8224  nnaddm1cl  8305  nn0n0n1ge2  8311  fseq1m1p1  8957  nn0ennn  9209  expm1t  9283  expgt1  9293  resqrexlemnm  9616  resqrexlemcvg  9617  resqrexlemga  9621
  Copyright terms: Public domain W3C validator