Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nncni Unicode version

Theorem nncni 7924
 Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
nnre.1
Assertion
Ref Expression
nncni

Proof of Theorem nncni
StepHypRef Expression
1 nnre.1 . . 3
21nnrei 7923 . 2
32recni 7039 1
 Colors of variables: wff set class Syntax hints:   wcel 1393  cc 6887  cn 7914 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-cnex 6975  ax-resscn 6976  ax-1re 6978  ax-addrcl 6981 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-int 3616  df-inn 7915 This theorem is referenced by:  numnncl2  8384  dec10p  8396  dec10  8397
 Copyright terms: Public domain W3C validator